Abstract

Spectrooptical and water quality data collected from a 1979 coordinated in situ and airborne study of western Lake Ontario are used to devise a five-component model from which subsurface chlorophyll a and suspended solids concentrations may be determined from submersible optical sensors capable of measuring spectral irradiance reflectance just beneath the free-surface layer. A water–air interface model, which incorporates the effects of surface reflection, is also presented in an attempt to extend such water quality estimations to low altitude remote sensors. Special emphasis is given to the spectral wavelength bands of the Coastal Zone Color Scanner aboard Nimbus-7.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).
  2. H. H. Zwick, S. C. Jain, R. P. Bukata, in Proceedings, ISPRA Workshop on the EURASEP Ocean Color Scanner Experiments, Italy (1980), pp. 181–198.
  3. J. D. H. Strickland, T. R. Parsons, Bull. Fish. Res. Board Can. 167, 185 (1972).
  4. R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.
  5. H. R. Gordon, O. B. Brown, M. M. Jacobs, Appl. Opt. 14, 417 (1975).
    [CrossRef] [PubMed]
  6. S. C. Jain, J. R. Miller, Appl. Opt. 15, 866 (1976).
    [CrossRef]
  7. R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
    [CrossRef] [PubMed]
  8. R. W. Austin, in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, Eds. (Academic, London, 1974), Chap. 14, p. 317.
  9. S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.
  10. C. Cox, W. Munk, J. Opt. Soc. Am. 44, 838 (1954).
    [CrossRef]
  11. N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).

1981 (1)

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

1980 (2)

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

1976 (1)

S. C. Jain, J. R. Miller, Appl. Opt. 15, 866 (1976).
[CrossRef]

1975 (1)

1972 (1)

J. D. H. Strickland, T. R. Parsons, Bull. Fish. Res. Board Can. 167, 185 (1972).

1954 (1)

Austin, R. W.

R. W. Austin, in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, Eds. (Academic, London, 1974), Chap. 14, p. 317.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Brown, O. B.

Bruton, J. E.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

Bukata, R. P.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

H. H. Zwick, S. C. Jain, R. P. Bukata, in Proceedings, ISPRA Workshop on the EURASEP Ocean Color Scanner Experiments, Italy (1980), pp. 181–198.

Cox, C.

Duntley, S. Q.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Edgerton, C. F.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Gordon, H. R.

Jacobs, M. M.

Jain, S. C.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

S. C. Jain, J. R. Miller, Appl. Opt. 15, 866 (1976).
[CrossRef]

H. H. Zwick, S. C. Jain, R. P. Bukata, in Proceedings, ISPRA Workshop on the EURASEP Ocean Color Scanner Experiments, Italy (1980), pp. 181–198.

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).

Jerome, J. H.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

McColl, W. D.

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

Miller, J. R.

S. C. Jain, J. R. Miller, Appl. Opt. 15, 866 (1976).
[CrossRef]

Moran, S. E.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Munk, W.

Parsons, T. R.

J. D. H. Strickland, T. R. Parsons, Bull. Fish. Res. Board Can. 167, 185 (1972).

Strickland, J. D. H.

J. D. H. Strickland, T. R. Parsons, Bull. Fish. Res. Board Can. 167, 185 (1972).

Wilson, W. H.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Zwick, H. H.

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

H. H. Zwick, S. C. Jain, R. P. Bukata, in Proceedings, ISPRA Workshop on the EURASEP Ocean Color Scanner Experiments, Italy (1980), pp. 181–198.

Appl. Opt. (4)

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, H. H. Zwick, Appl. Opt. 28, 000 (1981), this issue.

H. R. Gordon, O. B. Brown, M. M. Jacobs, Appl. Opt. 14, 417 (1975).
[CrossRef] [PubMed]

S. C. Jain, J. R. Miller, Appl. Opt. 15, 866 (1976).
[CrossRef]

R. P. Bukata, J. H. Jerome, J. E. Bruton, S. C. Jain, Appl. Opt. 19, 2487 (1980).
[CrossRef] [PubMed]

Bull. Fish. Res. Board Can. (1)

J. D. H. Strickland, T. R. Parsons, Bull. Fish. Res. Board Can. 167, 185 (1972).

J. Opt. Soc. Am. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. C. Jain, H. H. Zwick, W. D. McColl, R. P. Bukata, J. H. Jerome, Proc. Soc. Photo-Opt. Instrum. Eng. 208, 178 (1980).

Other (4)

H. H. Zwick, S. C. Jain, R. P. Bukata, in Proceedings, ISPRA Workshop on the EURASEP Ocean Color Scanner Experiments, Italy (1980), pp. 181–198.

N. G. Jerlov, Optical Oceanography (Elsevier, Amsterdam, 1968).

R. W. Austin, in Optical Aspects of Oceanography, N. G. Jerlov, E. S. Nielson, Eds. (Academic, London, 1974), Chap. 14, p. 317.

S. Q. Duntley, R. W. Austin, W. H. Wilson, C. F. Edgerton, S. E. Moran, “Ocean Color Analysis” (Visibility Lab., U. California at San Diego, 1974), SIO Ref. 74–10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Subsurface irradiance reflectance ratios 550:670, 520:670, 443:670, 443:520, and 520:550 nm as a function of chlorophyll a concentration for a water mass in which the suspended mineral concentration is zero.

Fig. 2
Fig. 2

Subsurface irradiance reflectance ratio 550:670 nm as a function of chlorophyll a concentration for water masses characterized by several fixed concentrations of suspended mineral.

Fig. 3
Fig. 3

Subsurface irradiance reflectance ratio 520:670 nm as a function of chlorophyll a concentration for water masses characterized by several fixed concentrations of suspended mineral.

Fig. 4
Fig. 4

Subsurface predictive water quality methodology based on the subsurface irradiance reflectances at 443 and 670 nm. Each point on the duoisoplethic curves is defined by the coordinates (Chl acor, suspended mineral).

Fig. 5
Fig. 5

Subsurface predictive water quality methodology based on the subsurface irradiance reflectances at 550 and 670 nm. Each point on the duoisoplethic curves is defined by the coordinates (Chl acor, suspended mineral).

Fig. 6
Fig. 6

Subsurface predictive water quality methodology based on the subsurface irradiance reflectances at 520 and 670 nm. Each point on the duoisoplethic curves is defined by the coordinates (Chl acor, suspended mineral).

Fig. 7
Fig. 7

Subsurface predictive water quality methodology based on the subsurface irradiance reflectances at 443 and 520 nm. Each point on the duoisoplethic curves is defined by the coordinates (Chl acor, suspended mineral).

Fig. 8
Fig. 8

Station-by-station comparison between the airborne derived subsurface irradiance reflectance (calculated from the water–air interface model) and the measured in situ subsurface irradiance reflectance for the May 1979 data set.

Fig. 9
Fig. 9

Station-by-station comparison between the airborne derived subsurface irradiance reflectance (calculated from the water–air interface model) and the measured in situ subsurface irradiance reflectance for the June 1979 data set.

Fig. 10
Fig. 10

Station-by-station comparison between the airborne derived subsurface irradiance reflectance (calculated from the water–air interface model) and the measured in situ subsurface irradiance reflectance for the July 1979 data set.

Fig. 11
Fig. 11

Station-by-station comparison between the airborne derived subsurface irradiance reflectance (calculated from the water–air interface model) and the measured in situ subsurface irradiance reflectance for the Sept. 1979 data set.

Fig. 12
Fig. 12

Comparison between measured and calculated concentrations of chlorophyll a utilizing in situ measurements of Rυ(520) and Rυ(670) and the duoisoplethic methodology of Fig. 6.

Fig. 13
Fig. 13

Comparison between measured and calculated concentrations of chlorophyll a utilizing the remote measurements of Lw(520) and Lw(670) and the duoisoplethic methodology of Fig. 6.

Fig. 14
Fig. 14

Comparison between measured and calculated concentrations of suspended mineral utilizing in situ measurements of Rυ(520) and Rυ(670) and the duoisoplethic methodology of Fig. 6.

Fig. 15
Fig. 15

Comparison between measured and calculated concentrations of suspended mineral utilizing the remote measurements of Lw(520) and Lw(670) and the duoisoplethic methodology of Fig. 6.

Tables (4)

Tables Icon

Table I Above Water Spectrooptical Measurements

Tables Icon

Table II In Situ Optical and Water Quality Measurements

Tables Icon

Table III Uncertainties in the Predictions of Chl a and SM Concentrations Using Combinations of Spectral Bands with the Five- and Four-component Water Quality Models

Tables Icon

Table IV Calculated Values of Wave Factor f

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

a ( λ ) = a w ( λ ) + x a Chl ( λ ) + y a SM ( λ ) + z a NLO ( λ ) + u a DO ( λ ) ,
b ( λ ) = b w ( λ ) + x b Chl ( λ ) + y b SM ( λ ) + z b NLO ( λ ) ,
( B b ) ( λ ) = ( B b ) w ( λ ) + x ( B b ) Chl ( λ ) + y ( B b ) SM ( λ ) + z ( B b ) NLO ( λ ) ,
R ( 0 , λ ) = n = 0 N r n ( 0 ) X n ,
X = ( B b ) ( λ ) a ( λ ) + ( B b ) ( λ ) ,
L u a = R υ · [ 1 ρ ( θ υ ) ] · H d b π n 2 ( 1 0.48 R υ ) ,
H d a = H sun + H sky .
H d b = H sun [ 1 ρ ( θ 0 ) ] + H sky ( 1 ρ sky ) ,
L u a = R υ · [ 1 ρ ( θ υ ) ] π n 2 ( 1 0.48 R υ ) { H sun [ 1 ρ ( θ 0 ) ] + H sky ( 1 ρ sky ) } .
L w = L u a + L ρ sky + L ρ sun = R υ · [ 1 ρ ( θ υ ) ] π n 2 ( 1 0.48 R υ ) { H sun [ 1 ρ ( θ 0 ) ] + H sky ( 1 ρ sky ) } + L sky · ρ ( θ υ ) + H sun · f ,
ρ ( θ 0 ) ρ ( θ υ ) 0.02.
ρ sky = 0.066.
L w = 0.98 R υ π n 2 ( 1 0.48 R υ ) ( 0.98 H sun + 0.934 H sky ) + 0.02 L sky + f H sun .
L w ( 960 ) = 0.02 L sky ( 960 ) + f H sun ( 960 ) .

Metrics