Abstract

Similarities between fiber bandwidth spectra and loss spectra are found to occur. Wavelength-dependent far-field radiation patterns were used to deduce that high OH ion concentrations, near the center of the core, caused differential attenuation of low-order modes. This resulted in bandwidth peaks at the same wavelengths where water absorption loss peaked.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
    [CrossRef]
  2. M. J. Buckler, F. P. Partus, J. W. Shiever, “Optimization of Multimode Fiber Bandwidth Via Differential Group Delay Analysis,” European Conference on Optical Communication, York, England (Sept.1980).
  3. D. B. Keck, R. Bouillie, Opt. Commun. 25, 43 (1978).
    [CrossRef]
  4. D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).
  5. R. Olshansky, D. B. Keck, Appl. Opt. 15, 483 (1976).
    [CrossRef] [PubMed]
  6. L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
    [CrossRef]
  7. L. G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 855 (1978).
    [CrossRef]
  8. J. A. Arnaud, J. Fleming, Electron. Lett. 12, 167 (1976).
    [CrossRef]
  9. J. Stone, unpublished work.
  10. R. Olshansky, S. M. Oaks, Appl. Opt. 17, 1830 (1978).
    [CrossRef] [PubMed]
  11. M. J. Buckler, “Differential Group Delay Measurement Using Single-Mode Fiber Selective Excitation,” Conference on Precision Electromagnetic Measurements, Braunschwieg, Federal Republic of Germany (June1980).
  12. A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).
  13. M. A. Saifi, “GeO2–P2O5–SiO2 Core Graded-index Fibers,” unpublished work;D. L. Wood, T. Y. Kometani, J. P. Luongo, M. A. Saifi, J. Am. Ceram. Soc. 62, 638 (1979).
    [CrossRef]
  14. A. D. Pearson, “Hydroxyl Contamination of Optical Fiber and its Control in the MCVD Process-I,” European Conference on Optical Communication, York, England (Sept.1980).
  15. L. G. Cohen, C. Lin, Appl. Opt. 16, 3136 (1977).
    [CrossRef] [PubMed]
  16. L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
    [CrossRef]

1980 (1)

L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
[CrossRef]

1979 (1)

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

1978 (4)

D. B. Keck, R. Bouillie, Opt. Commun. 25, 43 (1978).
[CrossRef]

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

L. G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 855 (1978).
[CrossRef]

R. Olshansky, S. M. Oaks, Appl. Opt. 17, 1830 (1978).
[CrossRef] [PubMed]

1977 (2)

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

L. G. Cohen, C. Lin, Appl. Opt. 16, 3136 (1977).
[CrossRef] [PubMed]

1976 (2)

R. Olshansky, D. B. Keck, Appl. Opt. 15, 483 (1976).
[CrossRef] [PubMed]

J. A. Arnaud, J. Fleming, Electron. Lett. 12, 167 (1976).
[CrossRef]

1973 (1)

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Arnaud, J. A.

J. A. Arnaud, J. Fleming, Electron. Lett. 12, 167 (1976).
[CrossRef]

Astle, H. W.

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

Bouillie, R.

D. B. Keck, R. Bouillie, Opt. Commun. 25, 43 (1978).
[CrossRef]

Buckler, M. J.

M. J. Buckler, “Differential Group Delay Measurement Using Single-Mode Fiber Selective Excitation,” Conference on Precision Electromagnetic Measurements, Braunschwieg, Federal Republic of Germany (June1980).

M. J. Buckler, F. P. Partus, J. W. Shiever, “Optimization of Multimode Fiber Bandwidth Via Differential Group Delay Analysis,” European Conference on Optical Communication, York, England (Sept.1980).

Cohen, L. G.

L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
[CrossRef]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

L. G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 855 (1978).
[CrossRef]

L. G. Cohen, C. Lin, Appl. Opt. 16, 3136 (1977).
[CrossRef] [PubMed]

Fleming, J.

J. A. Arnaud, J. Fleming, Electron. Lett. 12, 167 (1976).
[CrossRef]

French, W. G.

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

Gloge, D.

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Kaiser, P.

L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
[CrossRef]

Kaminow, I. P.

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

Kawana, A.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

Kawanchi, M.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

Keck, D. B.

Lin, C.

L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
[CrossRef]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

L. G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 855 (1978).
[CrossRef]

L. G. Cohen, C. Lin, Appl. Opt. 16, 3136 (1977).
[CrossRef] [PubMed]

Marcatili, E. A. J.

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Miyashita, T.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

Nakahara, M.

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

Oaks, S. M.

Olshansky, R.

Partus, F. P.

M. J. Buckler, F. P. Partus, J. W. Shiever, “Optimization of Multimode Fiber Bandwidth Via Differential Group Delay Analysis,” European Conference on Optical Communication, York, England (Sept.1980).

Pearson, A. D.

A. D. Pearson, “Hydroxyl Contamination of Optical Fiber and its Control in the MCVD Process-I,” European Conference on Optical Communication, York, England (Sept.1980).

Saifi, M. A.

M. A. Saifi, “GeO2–P2O5–SiO2 Core Graded-index Fibers,” unpublished work;D. L. Wood, T. Y. Kometani, J. P. Luongo, M. A. Saifi, J. Am. Ceram. Soc. 62, 638 (1979).
[CrossRef]

Shiever, J. W.

M. J. Buckler, F. P. Partus, J. W. Shiever, “Optimization of Multimode Fiber Bandwidth Via Differential Group Delay Analysis,” European Conference on Optical Communication, York, England (Sept.1980).

Stone, J.

J. Stone, unpublished work.

Stulz, L. W.

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

D. Gloge, E. A. J. Marcatili, Bell Syst. Tech. J. 52, 1563 (1973).

Elect. Commun. Lab. Tech. J. (1)

A. Kawana, T. Miyashita, M. Nakahara, M. Kawanchi, Elect. Commun. Lab. Tech. J. 26, 2543 (1977) (in Japanese).

Electron. Lett. (2)

J. A. Arnaud, J. Fleming, Electron. Lett. 12, 167 (1976).
[CrossRef]

L. G. Cohen, C. Lin, W. G. French, Electron. Lett. 15, 334 (1979).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. G. Cohen, I. P. Kaminow, H. W. Astle, L. W. Stulz, IEEE J. Quantum Electron. EQ-14, 37 (1978).
[CrossRef]

L. G. Cohen, C. Lin, IEEE J. Quantum Electron. QE-14, 855 (1978).
[CrossRef]

Opt. Commun. (1)

D. B. Keck, R. Bouillie, Opt. Commun. 25, 43 (1978).
[CrossRef]

Proc. IEEE (1)

L. G. Cohen, P. Kaiser, C. Lin, Proc. IEEE, Special issue on Optical Communications 68, 1203 (Nov.1980).
[CrossRef]

Other (5)

M. J. Buckler, F. P. Partus, J. W. Shiever, “Optimization of Multimode Fiber Bandwidth Via Differential Group Delay Analysis,” European Conference on Optical Communication, York, England (Sept.1980).

J. Stone, unpublished work.

M. J. Buckler, “Differential Group Delay Measurement Using Single-Mode Fiber Selective Excitation,” Conference on Precision Electromagnetic Measurements, Braunschwieg, Federal Republic of Germany (June1980).

M. A. Saifi, “GeO2–P2O5–SiO2 Core Graded-index Fibers,” unpublished work;D. L. Wood, T. Y. Kometani, J. P. Luongo, M. A. Saifi, J. Am. Ceram. Soc. 62, 638 (1979).
[CrossRef]

A. D. Pearson, “Hydroxyl Contamination of Optical Fiber and its Control in the MCVD Process-I,” European Conference on Optical Communication, York, England (Sept.1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Transmission bandwidth (GHz·km) vs wavelength spectral curves for fibers 1 and 2. Data points + were measured with a semiconductor laser. Remaining measurements were obtained using an automatic fiber characterization system based on a near IR fiber Raman laser source. Dashed curves would apply to fiber 1 (N.A. ≈ 0.193) if it had a perfect power-low profile shape that was optimized for λ = 1 μm. Peak theoretical bandwidths is 17 GHz·km.

Fig. 2
Fig. 2

Loss (dB/km) vs wavelength spectral curves for fibers 1 and 2.

Fig. 3
Fig. 3

Far-field radiation patterns for fiber 1 for wavelengths at λ = 1.06, 1.24, 1.3, and 1.53 μm.

Fig. 4
Fig. 4

Radiation patterns from fiber 1 for various launching conditions at r = 0, 5, 10, 15, 20 μm. Inset illustrates the small diameter launch beam focused at various radial positions on the fiber core. (a) Applies in a low-loss wavelength region, λ = 1.17 μm. (b) In the vicinity of an absorption peak at λ = 1.24 μm.

Fig. 5
Fig. 5

Radiation patterns from fiber 2 for wavelengths at λ = 1.06, 1.24, 1.3, 1.38, 1.53 μm.

Fig. 6
Fig. 6

Radiation patterns from fiber 2 for various launching conditions. (a) Applies in a low-loss region, λ = 1.3 μm. (b) In the vicinity of an absorption peak at λ = 1.38 μm.

Fig. 7
Fig. 7

Pulse outputs from 2.2-km long fiber 1. Horizontal time scale is 0.5 nsec/div. (a) Pulse shapes are compared at λ = 1.17 and 1.24 μm. (b) λ = 1.3 and 1.36 μm.

Fig. 8
Fig. 8

Pulse outputs from 1-km long fiber 2. Horizontal time scale is 0.5 nsec/div. Pulse shapes are compared at λ = 1.34 and 1.38 μm.

Fig. 9
Fig. 9

Chromatic dispersion effects in fibers 1 and 2: (a) Pulse delay (nsec) vs wavelength. Fifth-order polynomial curves were least mean square fitted to measured 0 data points. Minimum chromatic dispersion occurs at the wavelength corresponding to minimum delay. (b) Chromatic dispersion (nsec/km-nm) vs wavelength. Minimum dispersion occurs at λ = 1.3 μm for fiber 1 and at λ = 1.323 μm for fiber 2.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

1 L d τ d λ

Metrics