Abstract

The fabrication and characterization of a 17.5-M bit/sec integrated optical correlator are described. The correlator makes use of a novel programmable electrooptic spatial light modulator in conjunction with a digitally modulated surface acoustic wave.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Tsai, IEEE Trans. Circuits Sys. CAS-26, 1072 (1979).
    [CrossRef]
  2. G. S. Kino, Proc. IEEE 64, 724 (1976).
    [CrossRef]
  3. K. A. Ingebrigtsen, Proc. IEEE 64, 764 (1976).
    [CrossRef]
  4. H. Engan, IEEE Trans. Electron Devices ED-16, 1014 (1969).
    [CrossRef]
  5. H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).
  6. J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
    [CrossRef]
  7. C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
    [CrossRef]

1980

C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
[CrossRef]

1979

C. S. Tsai, IEEE Trans. Circuits Sys. CAS-26, 1072 (1979).
[CrossRef]

1976

G. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

K. A. Ingebrigtsen, Proc. IEEE 64, 764 (1976).
[CrossRef]

1974

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

1969

H. Engan, IEEE Trans. Electron Devices ED-16, 1014 (1969).
[CrossRef]

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Busch, J. R.

C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
[CrossRef]

Engan, H.

H. Engan, IEEE Trans. Electron Devices ED-16, 1014 (1969).
[CrossRef]

Hammer, J. M.

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

Ingebrigtsen, K. A.

K. A. Ingebrigtsen, Proc. IEEE 64, 764 (1976).
[CrossRef]

Kenan, R. P.

C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
[CrossRef]

Kino, G. S.

G. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

Kogelnik, H.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

Phillips, W.

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

Tsai, C. S.

C. S. Tsai, IEEE Trans. Circuits Sys. CAS-26, 1072 (1979).
[CrossRef]

Verber, C. M.

C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
[CrossRef]

Appl. Phys. Lett.

J. M. Hammer, W. Phillips, Appl. Phys. Lett. 24, 545 (1974).
[CrossRef]

Bell Syst. Tech. J.

H. Kogelnik, Bell Syst. Tech. J. 48, 2909 (1969).

IEEE Trans. Circuits Sys.

C. S. Tsai, IEEE Trans. Circuits Sys. CAS-26, 1072 (1979).
[CrossRef]

IEEE Trans. Electron Devices

H. Engan, IEEE Trans. Electron Devices ED-16, 1014 (1969).
[CrossRef]

Opt. Commun.

C. M. Verber, R. P. Kenan, J. R. Busch, Opt. Commun. 34, 32 (1980).
[CrossRef]

Proc. IEEE

G. S. Kino, Proc. IEEE 64, 724 (1976).
[CrossRef]

K. A. Ingebrigtsen, Proc. IEEE 64, 764 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic drawing of an integrated optical correlator based on the programmable IOSLM. The IOSLM is the array in the center of the drawing. The notations (0–1, 1–0, etc.) on the output beams indicate the state of the IOSLM and SAW segments, respectively, that are encountered by the respective beams.

Fig. 2
Fig. 2

Measured diffraction efficiency of the IOSLM grating array as a function of the applied voltage. Experimental data are indicated by the circles, and the solid curve is a fit to the form of Eq. (4).

Fig. 3
Fig. 3

Schematic drawing of the experimental arrangement used for testing the correlator.

Fig. 4
Fig. 4

Autocorrelation profile for the 32-bit word 11001111000011111100000011111111 (a) as generated by the correlator, and (b) as calculated. Note the asymmetry in both curves, produced by the presence of a signal from the IOSLM in the absence of a SAW signal. The digital word used is indicated by the top trace in (a) photograph.

Fig. 5
Fig. 5

Drawing to show the geometrical relationships for the improved correlator design. The IOSLM grating fingers are now tilted by the angle ψ. The left vertical line represents the SAW and the right one represents the IOSLM. The frequencies are now refined for the SAW.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E z = ( 0.847 ) ( V 0 g ) cos π z 2 g ,
Δ n = 1 2 n eff 3 r E .
sin θ B = λ 0 / 2 n eff Λ
η = sin 2 π Δ n d λ 0 cos θ B ,
Q = 2 π λ 0 d n eff Λ 2 = 29.
θ 0 = sin 1 ( λ 0 / 2 n eff Λ ) .

Metrics