Abstract

Based upon time resolved spectroscopy of 13-mm xenon filled flashlamps, we have constructed a unique dynamic pumping model to predict the gain performance of active mirror amplifiers. The model, which includes the effects of spontaneous emission, concentration quenching, water quenching, and amplified spontaneous emission, uses only spectroscopy data from small glass samples as input. The use of the model in amplifier/system optimizations will be described.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. H. Kelly, D. C. Brown, K. Teegarden, Appl. Opt. 19, 3817 (1980).
    [CrossRef] [PubMed]
  2. J. B. Trenholme, J. L. Emmett, in Proceedings, Ninth International Congress on High Speed Photography, W. G. Hyzer, W. G. Chace, Eds., SMPTE 299 (1970).
  3. J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1980).
    [CrossRef]
  4. D. C. Brown, J. A. Abate, L. Lund, J. Waldbillig, Appl. Opt. 20, 1688 (1981).
  5. G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
    [CrossRef]
  6. L. G. DeShazer, L. G. Komai, J. Opt. Soc. Am. 55, 940 (1965).
  7. B. R. Judd, Phys. Rev. 127, 750 (1962).
    [CrossRef]
  8. G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
    [CrossRef]
  9. Laser Program Annual Report, Lawrence Livermore Laboratory UCRL-50021-74 (1974).
  10. S. Stokowski, R. Saroyan, M. J. Weber, Nd Laser Glasses—Data Sheets, Lawrence Livermore Laboratory (1977).
  11. W. F. Krupke, IEEE J. Quantum Electron. QE-10, 450 (1974).
    [CrossRef]
  12. J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).
  13. Laser Program Annual Report, Lawrence Livermore Laboratory UCRL-50021-74 (1974).
  14. P. B. Newell, EG&G Technical Report B-4420, Jan. (1976).
  15. L. Noble, C. B. Kretschmer, Triannual Report 1, ECOM-0239-1, contract DAAB07-71-C-0239, Mar. (1972).
  16. J. H. Kelly, Ph.D. Thesis, Institute of Optics, U. Rochester (1980).
  17. J. B. Trenholme, Naval Research Laboratory Report 2480, July (1972).
  18. D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
    [CrossRef] [PubMed]
  19. S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).
  20. J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).
  21. D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

1981 (1)

D. C. Brown, J. A. Abate, L. Lund, J. Waldbillig, Appl. Opt. 20, 1688 (1981).

1980 (2)

1979 (1)

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

1978 (1)

1974 (2)

W. F. Krupke, IEEE J. Quantum Electron. QE-10, 450 (1974).
[CrossRef]

S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).

1965 (1)

1962 (2)

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

Abate, J. A.

D. C. Brown, J. A. Abate, L. Lund, J. Waldbillig, Appl. Opt. 20, 1688 (1981).

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1980).
[CrossRef]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Brown, D.

Brown, D. C.

D. C. Brown, J. A. Abate, L. Lund, J. Waldbillig, Appl. Opt. 20, 1688 (1981).

J. H. Kelly, D. C. Brown, K. Teegarden, Appl. Opt. 19, 3817 (1980).
[CrossRef] [PubMed]

D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).

DeShazer, L. G.

Emmett, J. L.

J. B. Trenholme, J. L. Emmett, in Proceedings, Ninth International Congress on High Speed Photography, W. G. Hyzer, W. G. Chace, Eds., SMPTE 299 (1970).

Gavin, M.

Hoose, J.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Jacobs, S.

Jacobs, S. D.

D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
[CrossRef] [PubMed]

J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).

Judd, B. R.

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

Kelly, J.

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1980).
[CrossRef]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Kelly, J. H.

J. H. Kelly, D. C. Brown, K. Teegarden, Appl. Opt. 19, 3817 (1980).
[CrossRef] [PubMed]

J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).

J. H. Kelly, Ph.D. Thesis, Institute of Optics, U. Rochester (1980).

Komai, L. G.

Kretschmer, C. B.

L. Noble, C. B. Kretschmer, Triannual Report 1, ECOM-0239-1, contract DAAB07-71-C-0239, Mar. (1972).

Krupke, W. F.

W. F. Krupke, IEEE J. Quantum Electron. QE-10, 450 (1974).
[CrossRef]

Lewis, O.

Linford, G. J.

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

Lund, L.

Nee, N.

Newell, P. B.

P. B. Newell, EG&G Technical Report B-4420, Jan. (1976).

Noble, L.

L. Noble, C. B. Kretschmer, Triannual Report 1, ECOM-0239-1, contract DAAB07-71-C-0239, Mar. (1972).

Ofelt, G. S.

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

Refermat, S.

Rinefierd, J.

J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).

Saroyan, R.

S. Stokowski, R. Saroyan, M. J. Weber, Nd Laser Glasses—Data Sheets, Lawrence Livermore Laboratory (1977).

Saroyan, R. A.

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

Singh, S.

S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).

Smith, R. G.

S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).

Stokowski, S.

S. Stokowski, R. Saroyan, M. J. Weber, Nd Laser Glasses—Data Sheets, Lawrence Livermore Laboratory (1977).

Teegarden, K.

J. H. Kelly, D. C. Brown, K. Teegarden, Appl. Opt. 19, 3817 (1980).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Trenholme, J. B.

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).

J. B. Trenholme, J. L. Emmett, in Proceedings, Ninth International Congress on High Speed Photography, W. G. Hyzer, W. G. Chace, Eds., SMPTE 299 (1970).

J. B. Trenholme, Naval Research Laboratory Report 2480, July (1972).

Van Uitert, L. G.

S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).

Waldbillig, J.

D. C. Brown, J. A. Abate, L. Lund, J. Waldbillig, Appl. Opt. 20, 1688 (1981).

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1980).
[CrossRef]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Weber, M. J.

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

S. Stokowski, R. Saroyan, M. J. Weber, Nd Laser Glasses—Data Sheets, Lawrence Livermore Laboratory (1977).

Appl. Opt. (4)

IEEE J. Quantum Electron. (2)

G. J. Linford, R. A. Saroyan, J. B. Trenholme, M. J. Weber, IEEE J. Quantum Electron. QE-15, 510 (1979).
[CrossRef]

W. F. Krupke, IEEE J. Quantum Electron. QE-10, 450 (1974).
[CrossRef]

J. Chem. Phys. (1)

G. S. Ofelt, J. Chem. Phys. 37, 511 (1962).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. (2)

S. Singh, R. G. Smith, L. G. Van Uitert, Phys. Rev. 8, (10) 2566 (1974).

B. R. Judd, Phys. Rev. 127, 750 (1962).
[CrossRef]

Other (11)

Laser Program Annual Report, Lawrence Livermore Laboratory UCRL-50021-74 (1974).

S. Stokowski, R. Saroyan, M. J. Weber, Nd Laser Glasses—Data Sheets, Lawrence Livermore Laboratory (1977).

J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

J. H. Kelly, D. C. Brown, J. Rinefierd, S. D. Jacobs, paper submitted to Applied Physics (1981).

Laser Program Annual Report, Lawrence Livermore Laboratory UCRL-50021-74 (1974).

P. B. Newell, EG&G Technical Report B-4420, Jan. (1976).

L. Noble, C. B. Kretschmer, Triannual Report 1, ECOM-0239-1, contract DAAB07-71-C-0239, Mar. (1972).

J. H. Kelly, Ph.D. Thesis, Institute of Optics, U. Rochester (1980).

J. B. Trenholme, Naval Research Laboratory Report 2480, July (1972).

J. B. Trenholme, J. L. Emmett, in Proceedings, Ninth International Congress on High Speed Photography, W. G. Hyzer, W. G. Chace, Eds., SMPTE 299 (1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Nd+3 energy levels.

Fig. 2
Fig. 2

Contours of decay rate (msec−1) as a function of optical density/cm at 2.2 μm and ion concentration (ions/cm3) for LHG-8 laser glass.

Fig. 3
Fig. 3

Xenon flashlamp spectral emittance as a function of wavelength for current densities of 1 × 103, 2 × 103, and 3 × 103 A/cm2.

Fig. 4
Fig. 4

Experimental apparatus for the measurement of inversion density in laser glasses as a function of optical thickness.

Fig. 5
Fig. 5

Measured and calculated (invden) normalized stored energy density as a function of optical thickness for Q-88 laser glass.

Fig. 6
Fig. 6

Measured and calculated (invden) normalized stored energy density as a function of optical thickness for ED-2 laser glass.

Fig. 7
Fig. 7

Typical fluorescence monitor.

Fig. 8
Fig. 8

Relative fluorescence as a function of pulse forming network voltage for LHG-8 laser glass with and without a reflector.

Fig. 9
Fig. 9

Relative fluorescence as a function of pulse forming network voltage for Q-88 laser glass with and without a reflector.

Fig. 10
Fig. 10

Relative fluorescence as a function of pulse forming network voltage for ED-2 laser glass with and without a reflector.

Fig. 11
Fig. 11

Active mirror amplifier features.

Fig. 12
Fig. 12

Experimental apparatus of the measurement of small signal gain in active mirror amplifiers.

Fig. 13
Fig. 13

Gain coefficient (m−1) as a function of bank energy for a 17 -cm diam, 2.54-cm thick, 1.85-wt. % LHG-8 active mirror amplifier showing measured and predicted values.

Fig. 14
Fig. 14

Gain coefficient (m−1) as a function of bank energy for a 23-cm diam, 3-cm thick, 2.63-wt. % LHG-8 active mirror amplifier showing measured and predicted values.

Fig. 15
Fig. 15

Percent increase in stored energy density for the ten major Nd+3 banks from 348–900 nm for a 17-cm diam, 3-cm thick, 2.5-wt. % LHG-8 active mirror amplifier and assured reflectance of 0, 25, 50, 75, and 100%.

Fig. 16
Fig. 16

Contours of stored energy density as a function of weight percent doping and 3 L C pump pulse width for a 17-cm diam, 2.54-cm thick active mirror amplifer showing the effects of cavity opacity, slow pumping, low absorption, and concentration quenching.

Fig. 17
Fig. 17

Contours of ln(G0) as a function of bank energy for a 17-cm diam active mirror amplifier using LHG-8 laser glass. Each point has been optimized for weight percent doping and pump pulse width as in Fig. 16.

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

I ( λ , z , t ) = I 0 ( λ , o , t ) exp [ α ( λ ) z ] ,
E s ( z , t ) = 0 t λ L 0 n ( λ ) λ λ L I ( λ , z , t ) α ( λ ) d λ d t ,
d E s ( z , t ) d t = λ L 0 n ( λ ) λ λ L I ( λ , z , t ) α ( λ ) d λ E s ( z , t ) τ ,
H s ( z , t ) = 0 t λ L 0 I ( z , n , t ) α ( λ ) ( 1 λ λ L ) d λ d t ;
W i = 1 τ 0 = f 4 n ω 3 ћ c 3 | μ f i | 2 ,
S = e 2 λ = 2,4,6 Ω λ | f N [ γ S L ] J U ( λ ) f N [ γ S L ] J | 2 ,
A [ ( S , L ) J ; ( S ¯ , L ¯ ) J ¯ ] = 64 π 4 3 h ( 2 J + 1 ) λ ¯ 3 χ S ,
1 τ 0 = J A [ ( S , L ) J ; ( S ¯ , L ¯ , J ¯ ) ] .
β [ ( S , L ) j ; ( S ¯ , L ¯ ) J ¯ ] = A [ ( S , L ) J ; ( S ¯ , L ¯ ) J ¯ ] A [ ( S , L ) J ; ( S ¯ , L ¯ ) J ¯ ] S ¯ , L ¯ , J ,
σ p ( λ p ) = λ p 4 8 π c n 2 Δ λ e f f A ( F 3 / 2 ; 4 I 11 / 2 ) ,
0 k ( λ ) d λ = 8 π 2 e 2 λ ¯ ρ 3 c h ( 2 J + 1 ) ( n 2 + 2 ) 2 9 n S
1 τ = 1 τ 0 [ 1 + ( ρ x 1 ) x 2 + ( δ x 3 ) x 4 ]
d E s ( z , t ) d t = β ( λ , J ) λ L 0 n ( λ ) λ λ L I ( λ , z , t ) α ( λ ) d λ 1 τ 1 + ( ρ x 1 ) x 2 + ( δ x 3 ) x 4 E s ( z , t ) ,
I ( λ , z , t ) = I 0 ( λ , t ) exp [ α ( λ ) z ] ,
I 0 ( λ , t ) = I B ( λ , t ) F ( β ) ,
I B ( λ , t ) = K λ 3 [ 1 exp ( h c / λ k T ) 1 ] ,
F ( β ) = 1 exp [ β ( λ ) ] ,
T ( D , J ) = [ ( 9450 D 0.03 J 0.01 ) 6 + ( 93 D 0.27 J 0.34 ) 6 ] 1 / 6 ;
L d i d t + i r ± K 0 | i | 1 / 2 + 1 c 0 t i d t = υ 0 ;
K 0 = C ( L D ) ( P 450 ) γ ,
V ( z ) = K 300 μ sec 80 μ sec B 1 τ τ 0 E s ( z , t ) d t ,
β ( λ , J ) = K [ 1 + c 1 exp ( c 2 J 2 { c 3 exp [ c 4 ( λ 0.7 ) 2 ] + c 5 } ) ] ,
G ( z ) = [ α 0 E s ( z ) α L ] D = α D ,
G 0 = exp [ 2 ( α 0 E s α L ) l ] ,
σ i σ j = ( n i n j ) 2 ( λ i λ j ) 5 I ( λ i ) I ( λ j ) ,

Metrics