Abstract

Active mirror amplifiers have been demonstrated to be viable large aperture amplifiers for use in laser fusion systems. In addition to having a large storage efficiency (1.2–1.5%) at the highest pumping level and a thermal recovery time in the 15–30-min range, they are also scalable to large apertures and allow the propagation of circular polarization. An important additional property is that regardless of the angle of incidence, no birefringence occurs in active mirror amplifiers. Based upon a circular polarization scheme that allows passive switching, we have constructed and operated a double-passed active mirror system. For a 50-J input energy and a pulse width of 700 psec (Gaussian FWHM), we have measured a focusable output energy of ≃230 J. Complementary single-pass experiments resulted in an output energy of ≃140 J, therefore, using the double-passed arrangement, we have increased the focusable output energy by ~64%. In this paper we describe the short-pulse (B-limited) and long-pulse (damage-limited) staging of double-passed active mirror systems, discuss in detail the passive double-pass system, and describe its experimental verification.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1981).
    [CrossRef] [PubMed]
  2. M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
    [CrossRef]
  3. R. Sampath, Laboratory for Laser Energetics, University of Rochester, OMEGA Technical Note 77 (1978); W. S. Martin, Report 68-C-285, General Electric Research & Development Center, Schenectady, New York (Aug.1968).
  4. D. C. Brown, U. Rochester Patent Docket UR-0027 (1979).
  5. K. A. Brueckner, S. Jorna, K. Moncur, Appl. Opt. 13, 2183 (1974).
    [CrossRef] [PubMed]
  6. Laser Program Annual Report, Lawrence Livermore Laboratory, UCRL-50021-74 (1974).
  7. Laser Program Annual Report, Lawrence Livermore Laboratory, UCRL-50021-75 (1975).
  8. J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).
  9. W. Seka, J. Soures, O. Lewis, J. Bunkenburg, D. Brown, S. Jacobs, G. Mourou, J. Zimmerman, Appl. Opt. 19, 409 (1980).
    [CrossRef] [PubMed]
  10. D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.
  11. H. Lowdermilk, D. Milam, F. Rainer, paper presented at Laser Induced Damage to Optical Materials, Boulder, Colorado (1979).
  12. W. Martin, D. Milam, Lawrence Livermore Laboratory, unpublished data (1980).

1981

1980

1978

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

1974

Abate, J. A.

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1981).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Brown, D.

Brown, D. C.

D. C. Brown, U. Rochester Patent Docket UR-0027 (1979).

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Brueckner, K. A.

Bunkenburg, J.

Cline, C. F.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Gavin, M.

Heiman, D.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Hellwarth, R. W.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Hoose, J.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Jacobs, S.

Jorna, S.

Kelly, J.

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1981).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Lewis, O.

Lowdermilk, H.

H. Lowdermilk, D. Milam, F. Rainer, paper presented at Laser Induced Damage to Optical Materials, Boulder, Colorado (1979).

Lund, L.

Martin, W.

W. Martin, D. Milam, Lawrence Livermore Laboratory, unpublished data (1980).

Milam, D.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

H. Lowdermilk, D. Milam, F. Rainer, paper presented at Laser Induced Damage to Optical Materials, Boulder, Colorado (1979).

W. Martin, D. Milam, Lawrence Livermore Laboratory, unpublished data (1980).

Moncur, K.

Mourou, G.

Rainer, F.

H. Lowdermilk, D. Milam, F. Rainer, paper presented at Laser Induced Damage to Optical Materials, Boulder, Colorado (1979).

Refermat, S.

Sampath, R.

R. Sampath, Laboratory for Laser Energetics, University of Rochester, OMEGA Technical Note 77 (1978); W. S. Martin, Report 68-C-285, General Electric Research & Development Center, Schenectady, New York (Aug.1968).

Seka, W.

Smith, W. L.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Soures, J.

Teegarden, K.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Trenholme, J. B.

J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).

Waldbillig, J.

J. A. Abate, L. Lund, D. Brown, S. Jacobs, S. Refermat, J. Kelly, M. Gavin, J. Waldbillig, O. Lewis, Appl. Opt. 20, 351 (1981).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Weber, M. J.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Zimmerman, J.

Appl. Opt.

Appl. Phys. Lett.

M. J. Weber, C. F. Cline, W. L. Smith, D. Milam, D. Heiman, R. W. Hellwarth, Appl. Phys. Lett. 32, 403 (1978).
[CrossRef]

Other

R. Sampath, Laboratory for Laser Energetics, University of Rochester, OMEGA Technical Note 77 (1978); W. S. Martin, Report 68-C-285, General Electric Research & Development Center, Schenectady, New York (Aug.1968).

D. C. Brown, U. Rochester Patent Docket UR-0027 (1979).

Laser Program Annual Report, Lawrence Livermore Laboratory, UCRL-50021-74 (1974).

Laser Program Annual Report, Lawrence Livermore Laboratory, UCRL-50021-75 (1975).

J. B. Trenholme, Shiva–Nova CP&D Interim Report, Misc. 107, Lawrence Livermore Laboratory (1977).

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, K. Teegarden, J. Waldbillig, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

H. Lowdermilk, D. Milam, F. Rainer, paper presented at Laser Induced Damage to Optical Materials, Boulder, Colorado (1979).

W. Martin, D. Milam, Lawrence Livermore Laboratory, unpublished data (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Passively switched double-passed active mirror system.

Fig. 2
Fig. 2

Plot of Eq. (10) showing a maximum hm ≃ 3.6 for B ≃ 4.1 Np (ɛ = 1.4 × 10−4).

Fig. 3
Fig. 3

Maximum focusable output from single- and double-passed stages as a function of the (even) number of active mirror amplifiers.

Fig. 4
Fig. 4

Percent pulse overlap at the front surface of 1-, 3-, and 6-cm thick passive active mirror amplifiers for a Gaussian pulse of varying durations and linear index of 1.505.

Fig. 5
Fig. 5

Damage threshold at the front surface of an active mirror amplifier of 3-cm thickness for varying pulse durations, with and without pulse overlap.

Fig. 6
Fig. 6

Focusable output energy as a function of the number (even) of amplifiers for a single- and double-passed stage for a pulse width of 700 psec.

Fig. 7
Fig. 7

Experimental double-passed active mirror configuration.

Fig. 8
Fig. 8

Focusable output energy as a function of input energy for four active mirror single- and double-passed systems.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

P 0 = X B T ( B ) F ,
B = C n 2 T λ n 0 0 L I ( z ) d z ,
T ( B ) = 1 ε 2 ( 1 + 2 B 2 + cosh 2 B ) .
X A = K α n 0 D 2 n L T λ ( 1 1 G 0 ) 1 .
α = α 0 E s α L .
G 0 + exp [ 2 ( α 0 E s α L ) l ] = exp ( 2 α l ) .
X A = X A ( 1 1 G 0 ) 1 ,
X A N = X A ( 1 1 G 0 N ) 1 ,
P 0 = X A ( 1 1 G 0 N ) 1 h ( B ) ,
h ( B ) = B T ( B ) .
P i = P 0 G 0 N ,
P O D = X A ( 1 1 G 0 2 N ) 1 h ( B ) .
η = P O M S P O M D = 1 G 0 2 ( G 0 2 N 1 G 0 N 1 ) ,
J M = 4 E T β π D 2 F ,

Metrics