## Abstract

Nested flat plates bent into the Kirkpatrick-Baez parabolic geometry and supported at discrete points are one means of obtaining large area grazing incidence x-ray optics with good angular resolution. A method for optimizing the on-axis resolution combining finite element and ray trace techniques with selective masking is presented. The optimally determined supported point location technique can lead to greatly reduced *in situ* labor costs.

© 1981 Optical Society of America

Full Article |

PDF Article
### Equations (5)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${S}_{\text{theo}}=\left[\frac{p}{{\left(2\xb7p\xb7{x}_{i}+{p}^{2}\right)}^{1/2}}\right],$$
(2)
$${\mathrm{E}}_{\text{rror}}=\frac{{\displaystyle \sum _{1}^{n}{\left({S}_{\text{theo}}-{S}_{\text{act}}\right)}^{2}}}{n}.$$
(3)
$${n\mathrm{E}}_{\text{rror}}^{2}={\displaystyle \sum _{1}^{n}{\left({S}_{\text{theo}}-{S}_{\text{act}}\right)}^{2}}.$$
(4)
$${S}_{i}={S}_{i,\text{base}}+{\displaystyle \sum _{j=1}^{j=5}\Delta {S}_{i,j}{\delta}_{j}},$$
(5)
$$n\phantom{\rule{0.2em}{0ex}}{\mathrm{E}}_{\text{rror}}^{2}={\displaystyle \sum _{i=1}^{n}{\left[{S}_{i,\text{theo}}-\left({S}_{i,\text{base}}+{\displaystyle \sum _{j=1}^{j=5}\Delta {S}_{i,j}{\delta}_{j}}\right)\right]}^{2}}\xb7{W}_{i}^{2}.$$