Abstract

Atmospheric MTF formulations are restated to include contrast reduction by thermal backgrounds received by the imaging system. These backgrounds should be of significance for infrared imaging through the atmosphere. Absorption windows such as 2.0–2.4 and 3.1–4.1-μm wavelengths, which contain minimum atmospheric background, are suggested as usually permitting the best resolution for long range atmospheric imaging of apparently bright objects despite the fact that received object beam radiation may even peak in the 8–13-μm window. The 8–13-μm window is generally better for thermal imaging of objects whose temperatures are close to those of the atmosphere.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. E. Hufnagel, N. R. Stanley, J. Opt. Soc. Am. 54, 52 (1964).
    [CrossRef]
  2. D. L. Fried, J. Opt. Soc. Am. 56, 1372 (1966).
    [CrossRef]
  3. R. W. Boyd, J. Opt. Soc. Am. 68, 877 (1978).
    [CrossRef]
  4. E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).
  5. R. J. Hill, S. F. Clifford, J. Opt. Soc. Am. 68, 892 (1978).
    [CrossRef]
  6. S. Q. Duntley, J. Opt. Soc. Am. 38, 179 (1948).
    [CrossRef]
  7. N. Jensen, Optical and Photographic Reconnaissance System (Wiley, New York, 1968), p. 44.
  8. N. S. Kopeika, Appl. Opt. 16, 2422 (1977); Appl. Opt. 17, 1162 (1978).
    [CrossRef] [PubMed]
  9. R. F. Lutomirski, Appl. Opt. 17, 3915 (1978).
    [CrossRef] [PubMed]
  10. N. S. Kopeika, J. Bordogna, Proc. IEEE 58, 1571 (1970).
    [CrossRef]
  11. E. E. Bell, L. Eisner, J. Young, R. A. Oetjen, J. Opt. Soc. Am. 50, 1313 (1960).
    [CrossRef]
  12. H. S. Stewart, R. F. Hopfield, “Atmospheric Effects,” in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1965), Vol. 1, pp. 131–140.
  13. R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.
  14. N. Jensen, Ref. 7, pp. 96–100.
  15. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 311.
  16. R. F. Lutomirski, H. T. Yura, Appl. Opt. 13, 431 (1974).
    [CrossRef] [PubMed]
  17. H. P. Lavin, “System Analysis,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), Vol. 1, pp. 333–374.
    [CrossRef]
  18. C. Roddier, J. Opt. Soc. Am. 66, 478 (1976).
    [CrossRef]
  19. R. C. Ramsey, Appl. Opt. 1, 465 (1962).
    [CrossRef]

1978 (4)

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

R. F. Lutomirski, Appl. Opt. 17, 3915 (1978).
[CrossRef] [PubMed]

R. W. Boyd, J. Opt. Soc. Am. 68, 877 (1978).
[CrossRef]

R. J. Hill, S. F. Clifford, J. Opt. Soc. Am. 68, 892 (1978).
[CrossRef]

1977 (1)

1976 (1)

1974 (1)

1970 (1)

N. S. Kopeika, J. Bordogna, Proc. IEEE 58, 1571 (1970).
[CrossRef]

1966 (1)

1964 (1)

1962 (1)

1960 (1)

1948 (1)

Armstead, R. L.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Bell, E. E.

Bordogna, J.

N. S. Kopeika, J. Bordogna, Proc. IEEE 58, 1571 (1970).
[CrossRef]

Boyd, R. W.

Clifford, S. F.

Cooper, A. W.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Crittenden, E. C.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Duntley, S. Q.

Eisner, L.

Fenn, R. W.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

Fried, D. L.

Garing, J. S.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

Hill, R. J.

Hopfield, R. F.

H. S. Stewart, R. F. Hopfield, “Atmospheric Effects,” in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1965), Vol. 1, pp. 131–140.

Hufnagel, R. E.

Jensen, N.

N. Jensen, Optical and Photographic Reconnaissance System (Wiley, New York, 1968), p. 44.

N. Jensen, Ref. 7, pp. 96–100.

Kalmbach, S. H.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Kopeika, N. S.

Lavin, H. P.

H. P. Lavin, “System Analysis,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), Vol. 1, pp. 333–374.
[CrossRef]

Lutomirski, R. F.

McClatchey, R. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

Milne, E. A.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Oetjen, R. A.

Ramsey, R. C.

Roddier, C.

Rodeback, G. W.

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Selby, J. E. A.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

Smith, W. J.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 311.

Stanley, N. R.

Stewart, H. S.

H. S. Stewart, R. F. Hopfield, “Atmospheric Effects,” in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1965), Vol. 1, pp. 131–140.

Volz, F. E.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

Young, J.

Yura, H. T.

Appl. Opt. (4)

J. Opt. Soc. Am. (7)

Proc. IEEE (1)

N. S. Kopeika, J. Bordogna, Proc. IEEE 58, 1571 (1970).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

E. C. Crittenden, A. W. Cooper, E. A. Milne, G. W. Rodeback, S. H. Kalmbach, R. L. Armstead, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 130 (1978).

Other (6)

N. Jensen, Optical and Photographic Reconnaissance System (Wiley, New York, 1968), p. 44.

H. S. Stewart, R. F. Hopfield, “Atmospheric Effects,” in Applied Optics and Optical Engineering, R. Kingslake, Ed. (Academic, New York, 1965), Vol. 1, pp. 131–140.

R. A. McClatchey, R. W. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978), Chap. 14, Figs. 30 and 31.

N. Jensen, Ref. 7, pp. 96–100.

W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966), p. 311.

H. P. Lavin, “System Analysis,” in Photoelectronic Imaging Devices, L. M. Biberman, S. Nudelman, Eds. (Plenum, New York, 1971), Vol. 1, pp. 333–374.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nonturbulence atmospheric MTFs for 400 and 273 K blackbody objects at a distance of 10 km. Ambient temperature = 300 K. Two elevation angles are considered. Atmospheric absorption assumes 5.7-mm precipitable water vapor in optical path: NB = 0; (a) 400 K target; (b) 273 K target.

Fig. 2
Fig. 2

Comparison of typical atmospheric and system MTFs at 3.4- and 10-μm Wavelengths for horizontal imaging of 400 K blackbody radiator of Fig. 1. Solid lines represent overall atmospheric MTFs; dashed lines are the solid lines multiplied by MTF of a diffraction-limited lens of 15-cm diam and 100-cm focal length. Turbulence described by Cn = 2.2 × 10−8 cm−1/3.

Fig. 3
Fig. 3

Comparison of atmospheric and system MTFs for vertical imaging of 400 K blackbody radiator of Fig. 1. Solid lines represent overall atmospheric MTFs; broken lines at left represent solid lines multiplied by MTF of a diffraction-limited lens of Fig. 2; broken lines in the middle represent solid lines multiplied by MTF of a diffraction-limited lens of f/No. equal to unity. The turbulence integral is described in the text.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

M i A ( f r , λ ) M T ( f r , λ ) M C ( λ , T ) ,
M T ( f r , λ ) exp [ 57.44 ( f l f r ) 5 / 3 λ 1 / 3 0 z C n ( z ) d z ] ,
M C ( λ , T ) = [ N O ( λ , T ) i N B i ( λ , T i ) ] exp [ 0 z α ( λ , z ) d z ] [ N O ( λ , T ) + i N B i ( λ , T i ) ] exp [ 0 z α ( λ , z ) d z ] + 2 i N A i ( λ , T i ) ,
N O N O exp [ 0 z α ( λ , z ) d z ] + i N A i ( λ , T i ) ,
N b i N B i ( λ , T i ) exp [ 0 z α ( λ , z ) d z ] + i N A i ( λ , T i ) .
M O ( λ , T ) = N O ( λ , T ) i N B i ( λ , T i ) N O ( λ , T ) + i N B i ( λ , T i ) .
M B ( λ , T ) = [ N O ( λ , T ) + i N B i ( λ , T i ) ] exp [ 0 z α ( λ , z ) d z ] [ N O ( λ , T ) + i N B i ( λ , T i ) ] exp [ 0 z α ( λ , z ) d z ] + 2 i N A i ( λ , T i ) .
M A = M B ( λ , T ) M T ( f r , λ ) .
i N A i ( λ , T i ) / exp | 0 z α ( λ , z ) d z |
M B ( λ , T ) = α 0 τ [ exp ( h c / λ k T A ) 1 ] α 0 τ [ exp ( h c / λ k T A ) 1 ] + 2 α A [ exp ( h c / λ k T 0 ) 1 ] ,
τ = exp | 0 z α s ( λ i , z ) d z |
T 0 T A > exp ( h c / λ k T 0 ) exp ( h c / λ k T 0 ) 1 · exp ( h c / λ k T A ) 1 exp ( h c / λ k T A ) .
λ h c / k T A 5 λ p A ,
0 z C n 2 ( z ) d z = 6 × 10 11 cm 1 / 3 .

Metrics