Abstract

This is the second of two papers based on an extensive series of measurements of the intensity and polarization of light from the zenith sky during periods of twilight made at an altitude of 3400 m on the island of Hawaii. Part 1 dealt with the skylight polarization; part 2 is on the measured intensity and quantities derived from the intensity. The principal results are that (1) the polarization and intensity of light from the zenith during twilight are sensitive indicators of the existence of turbid layers in the stratosphere and upper troposphere, and (2) at least at Mauna Loa primary scattering of the sunlight incident on the upper atmosphere during twilight is strongly dominant over secondary or multiple scattering at wavelengths beyond ~0.60 μm, whereas this is much less true at shorter wavelengths. It is suggested that the development and general use of a simple twilight polarimeter would greatly facilitate determinations of turbidity in the upper layers of the atmosphere.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Coulson, Appl. Opt. 19, 3469 (1980).
    [Crossref] [PubMed]
  2. F. Link, J. Obs. 17, 161 (1934).
  3. F. Link, Meteorol. Z. 59, 7 (1942).
  4. R. Grandmontagne, Ann. Phys. 11, 253 (1941).
  5. G. de Vaucouleurs, C. R. Acad. Sci. 232, 342 (1951).
  6. E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
    [Crossref]
  7. M. J. Koomen, C. Lock, D. M. Packer, R. Scolnik, R. Tousey, E. O. Hulburt, J. Opt. Soc. Am. 42, 353 (1952).
    [Crossref]
  8. E. K. Bigg, J. Meteorol. 13, 142 (1956).
    [Crossref]
  9. J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).
  10. J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A. 43, No. 2, 67 (1956).
  11. G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).
  12. G. Dietze, PAGEUP 77, 159 (1969).
    [Crossref]
  13. W. G. Blattner, H. G. Horak, D. G. Collins, M. B. Wells, Appl. Opt. 13, 534 (1974).
    [Crossref] [PubMed]
  14. V. M. Morozov, Atmos. Oceanic Phys. 11, 458 (1975).
  15. G. Steinhorst, Appl. Opt. 13, 219 (1974).
    [Crossref]
  16. G. Steinhorst, Contrib. Atmos. Phys. 50, 508 (1977).
  17. F. E. Volz, Appl. Opt. 8, 2505 (1969).
    [Crossref] [PubMed]
  18. F. E. Volz, J. Geophys. Res. 75, 5185 (1970).
    [Crossref]
  19. G. M. Shah, Tellus 21, 636 (1963).
  20. N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).
  21. F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
    [Crossref]
  22. J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
    [Crossref]
  23. J. V. Dave, C. L. Mateer, private communication (1980).
  24. F. E. Volz, J. Geophys. Res. 75, 1641 (1970).
    [Crossref]
  25. W. G. Blattner, in Radiation in the Atmosphere, H. J. Bolle, Ed. (PrincetonU. P., 1976), p. 268.

1980 (1)

1977 (1)

G. Steinhorst, Contrib. Atmos. Phys. 50, 508 (1977).

1975 (1)

V. M. Morozov, Atmos. Oceanic Phys. 11, 458 (1975).

1974 (2)

1970 (2)

F. E. Volz, J. Geophys. Res. 75, 1641 (1970).
[Crossref]

F. E. Volz, J. Geophys. Res. 75, 5185 (1970).
[Crossref]

1969 (2)

1968 (1)

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[Crossref]

1967 (1)

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

1963 (1)

G. M. Shah, Tellus 21, 636 (1963).

1962 (1)

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[Crossref]

1956 (3)

E. K. Bigg, J. Meteorol. 13, 142 (1956).
[Crossref]

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A. 43, No. 2, 67 (1956).

1952 (2)

1951 (1)

G. de Vaucouleurs, C. R. Acad. Sci. 232, 342 (1951).

1942 (1)

F. Link, Meteorol. Z. 59, 7 (1942).

1941 (1)

R. Grandmontagne, Ann. Phys. 11, 253 (1941).

1934 (1)

F. Link, J. Obs. 17, 161 (1934).

Ashburn, E. V.

E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
[Crossref]

Bigg, E. K.

E. K. Bigg, J. Meteorol. 13, 142 (1956).
[Crossref]

Blattner, W. G.

W. G. Blattner, H. G. Horak, D. G. Collins, M. B. Wells, Appl. Opt. 13, 534 (1974).
[Crossref] [PubMed]

W. G. Blattner, in Radiation in the Atmosphere, H. J. Bolle, Ed. (PrincetonU. P., 1976), p. 268.

Collins, D. G.

Coulson, K. L.

Dave, J. V.

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[Crossref]

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A. 43, No. 2, 67 (1956).

J. V. Dave, C. L. Mateer, private communication (1980).

de Vaucouleurs, G.

G. de Vaucouleurs, C. R. Acad. Sci. 232, 342 (1951).

Dietze, G.

G. Dietze, PAGEUP 77, 159 (1969).
[Crossref]

Divari, N. B.

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

Goody, R. M.

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[Crossref]

Grandmontagne, R.

R. Grandmontagne, Ann. Phys. 11, 253 (1941).

Horak, H. G.

Hulburt, E. O.

Koomen, M. J.

Link, F.

F. Link, Meteorol. Z. 59, 7 (1942).

F. Link, J. Obs. 17, 161 (1934).

Lock, C.

Mateer, C. L.

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[Crossref]

J. V. Dave, C. L. Mateer, private communication (1980).

Morozov, V. M.

V. M. Morozov, Atmos. Oceanic Phys. 11, 458 (1975).

Packer, D. M.

Ramanathan, K. R.

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A. 43, No. 2, 67 (1956).

Rozenberg, G. V.

G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).

Scolnik, R.

Shah, G. M.

G. M. Shah, Tellus 21, 636 (1963).

Steinhorst, G.

G. Steinhorst, Contrib. Atmos. Phys. 50, 508 (1977).

G. Steinhorst, Appl. Opt. 13, 219 (1974).
[Crossref]

Tousey, R.

Volz, F. E.

F. E. Volz, J. Geophys. Res. 75, 1641 (1970).
[Crossref]

F. E. Volz, J. Geophys. Res. 75, 5185 (1970).
[Crossref]

F. E. Volz, Appl. Opt. 8, 2505 (1969).
[Crossref] [PubMed]

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[Crossref]

Wells, M. B.

Ann. Phys. (1)

R. Grandmontagne, Ann. Phys. 11, 253 (1941).

Appl. Opt. (4)

Atmos. Oceanic Phys. (2)

V. M. Morozov, Atmos. Oceanic Phys. 11, 458 (1975).

N. B. Divari, Atmos. Oceanic Phys. 3, 507 (1967).

C. R. Acad. Sci. (1)

G. de Vaucouleurs, C. R. Acad. Sci. 232, 342 (1951).

Contrib. Atmos. Phys. (1)

G. Steinhorst, Contrib. Atmos. Phys. 50, 508 (1977).

J. Atmos. Sci. (1)

F. E. Volz, R. M. Goody, J. Atmos. Sci. 19, 385 (1962).
[Crossref]

J. Geophys. Res. (4)

J. V. Dave, C. L. Mateer, J. Geophys. Res. 73, 6897 (1968).
[Crossref]

F. E. Volz, J. Geophys. Res. 75, 1641 (1970).
[Crossref]

F. E. Volz, J. Geophys. Res. 75, 5185 (1970).
[Crossref]

E. V. Ashburn, J. Geophys. Res. 57, 85 (1952).
[Crossref]

J. Meteorol. (1)

E. K. Bigg, J. Meteorol. 13, 142 (1956).
[Crossref]

J. Obs. (1)

F. Link, J. Obs. 17, 161 (1934).

J. Opt. Soc. Am. (1)

Meteorol. Z. (1)

F. Link, Meteorol. Z. 59, 7 (1942).

PAGEUP (1)

G. Dietze, PAGEUP 77, 159 (1969).
[Crossref]

Proc. Indian Acad. Sci. Sect. A (1)

J. V. Dave, Proc. Indian Acad. Sci. Sect. A 43, No. 6, 336 (1956).

Proc. Indian Acad. Sci. Sect. A. (1)

J. V. Dave, K. R. Ramanathan, Proc. Indian Acad. Sci. Sect. A. 43, No. 2, 67 (1956).

Tellus (1)

G. M. Shah, Tellus 21, 636 (1963).

Other (3)

G. V. Rozenberg, Twilight: A Study in Atmospheric Optics, (Plenum, New York, 1966).

W. G. Blattner, in Radiation in the Atmosphere, H. J. Bolle, Ed. (PrincetonU. P., 1976), p. 268.

J. V. Dave, C. L. Mateer, private communication (1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Average zenith intensities for nine low turbidity days at Mauna Loa as a function of sun elevation. Data have been normalized to a photon count rate of 106/sec at a 0° sun elevation. Sun elevation scale on the abscissa applies only for λ = 0.90 μm (the other curves have successive displacements to the right), but sun elevation curves have also been superimposed and labeled on the right. Included is a curve of the mass, on a relative scale, of the amount of air above the solar ray, which is tangent to the earth’s surface at the various solar depressions.

Fig. 2
Fig. 2

Average zenith intensities at three wavelengths for low turbidity conditions at Mauna Loa (solid curves) compared with similar data obtained by Dave and Ramanathan10 at an altitude of 1200 m in India. All data have been normalized at 104 at a solar depression of 5°.

Fig. 3
Fig. 3

Zenith intensity as a function of sun elevation as measured by Koomen et al.7 at two different locations, computed by Blattner et al.13 for a pure Rayleigh atmosphere, and measured at Mauna Loa in this study. Data have all been normalized to the same value at a 0° sun elevation.

Fig. 4
Fig. 4

Normalized zenith intensity as a function of sun elevation as computed for a normal clear atmosphere by Dave and Mateer23 at four different wavelengths and as observed on the clearest days at two wavelengths at Mauna Loa. Data have been normalized to the same value at a 0° sun elevation.

Fig. 5
Fig. 5

Deviation of the zenith intensity I from the low turbidity average Ī as a function of sun elevation in four different wavelengths as measured at Mauna Loa 17 Feb. 1977. Deviations here an in the two subsequent diagrams are expressed as the fraction (IĪ)/Ī.

Fig. 6
Fig. 6

Deviation of the zenith intensity from the low turbidity average as a function of sun elevation for six different wavelengths, as measured at Mauna Loa 3 Apr. 1977.

Fig. 7
Fig. 7

Deviation of zenith intensity from the low turbidity average as a function of sun elevation for six different wavelengths, as measured at Mauna Loa 2 May 1977.

Fig. 8
Fig. 8

Color ratio 0.80 μm/λi of low turbidity average zenith intensity at 0.80 μm in conjunction with that at other wavelengths λi as a function of sun elevation at the Mauna Loa Observatory. Data of this and subsequent diagrams were normalized to unity at 5° sun elevation.

Fig. 9
Fig. 9

Color ratio 0.80/0.50 μm for zenith intensities as a function of sun elevation for various moderate to high turbidity conditions at Mauna Loa. Average low turbidity curve is given for comparison.

Fig. 10
Fig. 10

Color ratio 0.80/0.50 μm for zenith intensities as a function of sun elevation for 3 days with disturbed weather conditions at Mauna Loa. Average low turbidity curve is given for comparison.

Fig. 11
Fig. 11

Color ratio 0.80 μm/λi as a function of sun elevation for various wavelengths as measured under disturbed weather conditions at Mauna Loa 3 Apr. 1977.

Fig. 12
Fig. 12

Color ratio 0.70/0.40 μm as a function of sun elevation for clear and turbid conditions at Mauna Loa (solid curves) compared with that from the computations of primary scattering by Dave and Mateer23 for various atmospheric models.

Fig. 13
Fig. 13

Altitude profiles of the magnitudes of primary scattering (solid curves) and secondary scattering (dashed curves) for solar radiation at a wavelength of 0.80 μm and solar depression angles of 0, 4, and 8° for a Rayleigh atmosphere. Data were adapted from Dave9 (units of incident energy).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R 1 = I 1 ( 0.80 ) I 1 0.435 ) = ( 0.435 0.80 ) 4 = 0.08742

Metrics