Abstract

Lidar provides the means to evaluate quantitatively the spatial and temporal variability of smoke and dust clouds as they are transported downwind from particulate sources. Quantitative evaluation of cloud optical and physical densities from cloud backscatter is complicated by effects from particle size, shape, and composition and by attenuation and multiple scattering for dense clouds. Examples are presented that review use of the lidar technique to provide useful evaluations of smoke and dust clouds.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. T. H. Collis, P. B. Russell in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
    [CrossRef]
  2. E. E. Uthe, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 67 (1978).
  3. C. S. Cook, G. W. Bethke, W. D. Conner, Appl. Opt. 11, 1742 (1972).
    [CrossRef] [PubMed]
  4. S. R. Pal, A. I. Carswell, Appl. Opt. 12, 1530 (1973).
    [CrossRef] [PubMed]
  5. K. Sassen, J. Appl. Meteorol. 17, 73 (1978).
    [CrossRef]
  6. E. E. Uthe, APCA J. 30, 382 (1980).
  7. E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.
  8. E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

1980

E. E. Uthe, APCA J. 30, 382 (1980).

E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

1978

E. E. Uthe, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 67 (1978).

K. Sassen, J. Appl. Meteorol. 17, 73 (1978).
[CrossRef]

1973

1972

Bethke, G. W.

Carswell, A. I.

Collis, R. T. H.

R. T. H. Collis, P. B. Russell in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

Conner, W. D.

Cook, C. S.

Jimison, W.

E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

Lapple, C. E.

E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.

Mancuso, R. L.

E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.

Nielsen, N. B.

E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

Pal, S. R.

Russell, P. B.

R. T. H. Collis, P. B. Russell in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

Sassen, K.

K. Sassen, J. Appl. Meteorol. 17, 73 (1978).
[CrossRef]

Uthe, E. E.

E. E. Uthe, APCA J. 30, 382 (1980).

E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

E. E. Uthe, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 67 (1978).

E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.

Witham, C. L.

E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.

APCA J.

E. E. Uthe, APCA J. 30, 382 (1980).

Appl. Opt.

Bull. Am. Meteorol. Soc.

E. E. Uthe, N. B. Nielsen, W. Jimison, Bull. Am. Meteorol. Soc. 61, 1035 (1980).

J. Appl. Meteorol.

K. Sassen, J. Appl. Meteorol. 17, 73 (1978).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

E. E. Uthe, Proc. Soc. Photo-Opt. Instrum. Eng. 142, 67 (1978).

Other

R. T. H. Collis, P. B. Russell in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), p. 71.
[CrossRef]

E. E. Uthe, C. E. Lapple, C. L. Witham, R. L. Mancuso, Third Symposium on Fugitive Emissions Measurement and Control, EPA Report 600/7-79-182 (1979), pp. 431–442.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Example of computer-generated vertical plume density profiles. Lidar is located at lower left corner. The height and distance scale is 75 m/div. Plume vertical concentrations (relative to clear air with a scale of 10 dB/div) are plotted at the lower left, and the horizontal position associated with each profile is plotted in the upper right.

Fig. 2
Fig. 2

Lidar-derived distance/time cross section of aerosol structure resulting from mortar firing and impact.

Fig. 3
Fig. 3

Experiment configuration of two-wavelength lidar observations during Smoke Week II.

Fig. 4
Fig. 4

Range/time intensity-modulated displays depicting lidar-observed structure along instrumented path intersected by aerosol clouds generated during Smoke Week II. Upper record is from SRI 0.7-μm wavelength lidar and lower record is from ASL 10.6-μm wavelength lidar. Target, cloud, and retroreflector (IR only) are indicated by the letters T, C, and R, respectively.

Fig. 5
Fig. 5

Comparison of transmissions derived from lidar target returns and transmissometer records for (a) visible, (b) infrared systems, and (c) path-integrated backscatter for three Smoke Week II trials.

Fig. 6
Fig. 6

Lidar-derived relationship between cloud optical depth and path-integrated backscatter (a) and (b) and comparison of lidar backscatter-derived transmissions with transmissometer records (c) and (d).

Fig. 7
Fig. 7

Derivations of optical depth-integrated backscatter expressions and comparisons of transmissions derived from lidar target, lidar backscatter, and transmissometer methods. Expressions derived are (a) between visible optical depth and infrared integrated backscatter and (d) between infrared optical depth and infrared integrated backscatter. Comparisons of backscatter-derived transmissions and those derived from lidar target and transmissometer records are shown in (b), (c), (e), and (f).

Fig. 8
Fig. 8

Plume returns plotted against opacities derived from near-and far-side clear-air returns.

Fig. 9
Fig. 9

Parallel- and cross-polarization backscatter observations of dust and water clouds made with the Mark IX lidar.

Fig. 10
Fig. 10

Theoretical and observed dependence of the extinction-to-mass ratio of fly ash aerosols on particle size and wavelength of the light source.

Fig. 11
Fig. 11

Extinction-to-volume concentration ratios as a function of particle size for visible and infrared (3.39-μm) wavelengths.

Fig. 12
Fig. 12

Particulate emission rate evaluated from lidar plotted as a function of emission rate evaluated from particle feeder.

Fig. 13
Fig. 13

Airborne lidar observations of the cross-plume structure of a subvisible power plant plume at different downwind distances from the plant (1.06-μm lidar wavelength).

Metrics