Abstract

A newly developed stripe-geometry injection laser is presented with built-in passive waveguiding produced by an effective refractive-index step between active stripe and adjoining regions. In contrast with the similar CSP laser, however, confinement of the lasing mode is achieved by metal reflection instead of excess absorption loss outside the active stripe. A model for this type of injection laser is established, and a numerical analysis of the waveguiding mechanism is performed. As a result, design curves are obtained that directly determine the technological parameters required for diode preparation.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. A. D’Asaro, J. Lumin. 7, 310 (1973).
    [CrossRef]
  2. P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
    [CrossRef]
  3. A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
    [CrossRef]
  4. T. Tsukada, J. Appl. Phys. 45, 4899 (1974).
    [CrossRef]
  5. W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).
  6. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
    [CrossRef]
  7. K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
    [CrossRef]
  8. G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
    [CrossRef]
  9. J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
    [CrossRef]
  10. M.-C. Amann, Electron. Lett. 15, 441 (1979).
    [CrossRef]
  11. M.-C. Amann, B. Stegmüller, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), MC3-1.
  12. Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
    [CrossRef]
  13. J. Buus, M. J. Adams, IEEE J. Solid-State Electron Devices (UK) 3, 189 (1971).
    [CrossRef]

1979 (5)

P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
[CrossRef]

G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
[CrossRef]

J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
[CrossRef]

M.-C. Amann, Electron. Lett. 15, 441 (1979).
[CrossRef]

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

1978 (2)

W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

1977 (2)

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
[CrossRef]

1974 (1)

T. Tsukada, J. Appl. Phys. 45, 4899 (1974).
[CrossRef]

1973 (1)

L. A. D’Asaro, J. Lumin. 7, 310 (1973).
[CrossRef]

1971 (1)

J. Buus, M. J. Adams, IEEE J. Solid-State Electron Devices (UK) 3, 189 (1971).
[CrossRef]

Adams, M. J.

J. Buus, M. J. Adams, IEEE J. Solid-State Electron Devices (UK) 3, 189 (1971).
[CrossRef]

Aiki, K.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

Amann, M.-C.

M.-C. Amann, Electron. Lett. 15, 441 (1979).
[CrossRef]

M.-C. Amann, B. Stegmüller, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), MC3-1.

Arai, S.

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Buus, J.

J. Buus, M. J. Adams, IEEE J. Solid-State Electron Devices (UK) 3, 189 (1971).
[CrossRef]

Chinone, N.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

Claassen, M.

W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).

D’Asaro, L. A.

L. A. D’Asaro, J. Lumin. 7, 310 (1973).
[CrossRef]

Fiddyment, P. J.

A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
[CrossRef]

Grothe, H.

W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).

Harth, W.

W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).

Itaya, Y.

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Ito, R.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

Katayama, S.

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Kishino, K.

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Kuroda, T.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

Logan, R. A.

J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
[CrossRef]

Lovelace, D. F.

G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
[CrossRef]

Maeda, M.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

Marschall, P.

P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
[CrossRef]

Nakamura, M.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

Newman, D. H.

A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
[CrossRef]

Reinhart, F. K.

J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
[CrossRef]

Schlosser, E.

P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
[CrossRef]

Shelton, J. C.

J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
[CrossRef]

Stegmüller, B.

M.-C. Amann, B. Stegmüller, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), MC3-1.

Steventon, A. G.

A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
[CrossRef]

Suematsu, Y.

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Thompson, G. H. B.

G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
[CrossRef]

Tsukada, T.

T. Tsukada, J. Appl. Phys. 45, 4899 (1974).
[CrossRef]

Turley, S. E. H.

G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
[CrossRef]

Umeda, J.

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

Wölk, C.

P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
[CrossRef]

AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. (1)

W. Harth, M. Claassen, H. Grothe, AEU Arch. fuer Elektron, und Uebertragungstech. Electron. and Commun. 32, 137 (1978).

Appl. Phys. Lett. (1)

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, Appl. Phys. Lett. 30, 649 (1977).
[CrossRef]

Electron. Lett. (2)

P. Marschall, E. Schlosser, C. Wölk, Electron. Lett. 15, 38 (1979).
[CrossRef]

M.-C. Amann, Electron. Lett. 15, 441 (1979).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Aiki, M. Nakamura, T. Kuroda, J. Umeda, R. Ito, N. Chinone, M. Maeda, IEEE J. Quantum Electron. QE-14, 89 (1978).
[CrossRef]

IEEE J. Solid-State Electron Devices (UK) (1)

J. Buus, M. J. Adams, IEEE J. Solid-State Electron Devices (UK) 3, 189 (1971).
[CrossRef]

IEEE. J. Quantum Electron. (1)

G. H. B. Thompson, D. F. Lovelace, S. E. H. Turley, IEEE. J. Quantum Electron. QE-15, 772 (1979).
[CrossRef]

J. Appl. Phys. (2)

J. C. Shelton, F. K. Reinhart, R. A. Logan, J. Appl. Phys. 50, 6675 (1979).
[CrossRef]

T. Tsukada, J. Appl. Phys. 45, 4899 (1974).
[CrossRef]

J. Lumin. (1)

L. A. D’Asaro, J. Lumin. 7, 310 (1973).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Itaya, Y. Suematsu, S. Katayama, K. Kishino, S. Arai, Jpn. J. Appl. Phys. 18, 1795 (1979).
[CrossRef]

Opt. Quantum Electron. (1)

A. G. Steventon, P. J. Fiddyment, D. H. Newman, Opt. Quantum Electron. 9, 519 (1977).
[CrossRef]

Other (1)

M.-C. Amann, B. Stegmüller, in Digest of Topical Meeting on Integrated and Guided Wave Optics (Optical Society of America, Washington, D.C., 1980), MC3-1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic structure of the MCRW laser; (b) model of the MCRW laser.

Fig. 2
Fig. 2

Curves Δneff vs T for the AlGaAs–GaAs MCRW laser at 870-nm wavelength. The parameter is the thickness of the active layer D. The difference of the aluminum mole fraction Δx between the active and confining layers amounts to (a) 0.25, (b) 0.35, and (c) 0.45, respectively.

Fig. 3
Fig. 3

Curves Δneff versus D for the AlGaAs–GaAs MCRW laser at 870-nm wavelength. The parameter is the spacing T between the active layer and metal cladding besides the active stripe. The difference of aluminum mole fraction is chosen to Δx = 0.35.

Fig. 4
Fig. 4

Curves Δneff vs T for the GaInAsP–InP MCRW laser. Composition of the active GaInAsP layer is adjusted for wavelengths of (a) 1.27 μm and (b) 1.55 μm, respectively. The parameter is the thickness of the active layer D.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n eff = n A eff n B eff ( Δ n eff > 0 ) .
0.3 δ n eff Δ n eff 0.4.

Metrics