Abstract

A coherent optical information parallel processing technique using a multidiffraction grating is presented. We have shown that this parallel processing technique is capable of performing multichannel spatial filtering in the spatial frequency plane. The number of parallel processing channels is about 2N times the number of processing channels of the conventional coherent optical processor. However, in practice, the number of processing channels is limited by the number of multiplex gratings that can be synthesized and the available power of the light source. Extension of the monochromatic parallel processing system to polychromatic parallel processing is also presented. It can be shown that the number of processing channels of the polychromatic parallel processor is higher than the monochromatic parallel processor. Extension of this parallel processing concept to multisignal parallel processing is also discussed. However, the multisignal processing technique is not a real-time method because it requires an initial encoding step. Nevertheless, this disadvantage may be alleviated with ingenious design of the encoding system. We also assert that this parallel processing technique may be applied to white light parallel processing.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, Opt. Commun. 27, 23 (1978).
    [CrossRef]
  2. F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
    [CrossRef] [PubMed]
  3. F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
    [CrossRef] [PubMed]
  4. F. T. S. Yu, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 9 (1980).
  5. F. T. S. Yu, T. H. Chao, Optik 56, 423 (1980).
  6. F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. 34, 11 (1980).
    [CrossRef]
  7. F. T. S. Yu, Appl. Opt. 19, 2457 (1980).
    [CrossRef] [PubMed]
  8. T. A. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
    [CrossRef] [PubMed]
  9. A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
    [CrossRef]
  10. A. Vander Lugt, Opt. Acta 15, 1 (1968).
    [CrossRef]
  11. F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, Appl. Opt. 19, 2986 (1980).
    [CrossRef] [PubMed]
  12. S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 109 (1981).
    [CrossRef]
  13. F. T. S. Yu, T. H. Chao, S. L. Zhuang, Appl. Opt. 19, 1887 (1980).
    [CrossRef] [PubMed]
  14. S. K. Case, R. Alferness, Appl. Phys. 10, 416 (1976).
    [CrossRef]
  15. B. J. Chang, C. D. Leonard, Appl. Opt. 18, 2407 (1979).
    [CrossRef] [PubMed]
  16. P. F. Mueller, Appl. Opt. 8, 267 (1969).
    [CrossRef] [PubMed]
  17. C. E. K. Mees, T. H. James, Theory of the Photographic Process (Macmillan, New York, 1966).
  18. F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973).

1981 (1)

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 109 (1981).
[CrossRef]

1980 (7)

1979 (2)

1978 (2)

1976 (1)

S. K. Case, R. Alferness, Appl. Phys. 10, 416 (1976).
[CrossRef]

1969 (1)

1968 (1)

A. Vander Lugt, Opt. Acta 15, 1 (1968).
[CrossRef]

1964 (1)

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Alferness, R.

S. K. Case, R. Alferness, Appl. Phys. 10, 416 (1976).
[CrossRef]

Case, S. K.

S. K. Case, R. Alferness, Appl. Phys. 10, 416 (1976).
[CrossRef]

Chang, B. J.

Chao, T. A.

Chao, T. H.

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 109 (1981).
[CrossRef]

F. T. S. Yu, T. H. Chao, S. L. Zhuang, Appl. Opt. 19, 1887 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, Appl. Opt. 19, 2986 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, T. H. Chao, Optik 56, 423 (1980).

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. 34, 11 (1980).
[CrossRef]

Dymek, M. S.

James, T. H.

C. E. K. Mees, T. H. James, Theory of the Photographic Process (Macmillan, New York, 1966).

Leonard, C. D.

Mees, C. E. K.

C. E. K. Mees, T. H. James, Theory of the Photographic Process (Macmillan, New York, 1966).

Mueller, P. F.

Tai, A.

Vander Lugt, A.

A. Vander Lugt, Opt. Acta 15, 1 (1968).
[CrossRef]

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Yu, F. T. S.

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 109 (1981).
[CrossRef]

F. T. S. Yu, T. H. Chao, S. L. Zhuang, Appl. Opt. 19, 1887 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, M. S. Dymek, Appl. Opt. 19, 2986 (1980).
[CrossRef] [PubMed]

T. A. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 9 (1980).

F. T. S. Yu, T. H. Chao, Optik 56, 423 (1980).

F. T. S. Yu, Appl. Opt. 19, 2457 (1980).
[CrossRef] [PubMed]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. 34, 11 (1980).
[CrossRef]

F. T. S. Yu, A. Tai, Appl. Opt. 18, 2705 (1979).
[CrossRef] [PubMed]

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

F. T. S. Yu, Appl. Opt. 17, 3571 (1978).
[CrossRef] [PubMed]

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973).

Zhuang, S. L.

Appl. Opt. (7)

Appl. Phys. (1)

S. K. Case, R. Alferness, Appl. Phys. 10, 416 (1976).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. Vander Lugt, IEEE Trans. Inf. Theory IT-10, 139 (1964).
[CrossRef]

Opt. Acta (1)

A. Vander Lugt, Opt. Acta 15, 1 (1968).
[CrossRef]

Opt. Commun. (2)

F. T. S. Yu, Opt. Commun. 27, 23 (1978).
[CrossRef]

F. T. S. Yu, S. L. Zhuang, T. H. Chao, Opt. Commun. 34, 11 (1980).
[CrossRef]

Opt. Lett. (2)

T. A. Chao, S. L. Zhuang, F. T. S. Yu, Opt. Lett. 5, 230 (1980).
[CrossRef] [PubMed]

S. L. Zhuang, T. H. Chao, F. T. S. Yu, Opt. Lett. 6, 109 (1981).
[CrossRef]

Optik (1)

F. T. S. Yu, T. H. Chao, Optik 56, 423 (1980).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. T. S. Yu, Proc. Soc. Photo-Opt. Instrum. Eng. 232, 9 (1980).

Other (2)

C. E. K. Mees, T. H. James, Theory of the Photographic Process (Macmillan, New York, 1966).

F. T. S. Yu, Introduction to Diffraction, Information Processing, and Holography (MIT Press, Cambridge, Mass., 1973).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coherent optical parallel processing system: s(x,y), input signal transparency; T(x,y), light diffraction efficient multiplex grating; S, monochromatic point source.

Fig. 2
Fig. 2

Parallel complex spatial filtering. Hn(pn,qn) is the complex spatial filter.

Fig. 3
Fig. 3

Sketch of output diffraction.

Fig. 4
Fig. 4

Polychromatic parallel complex spatial filtering: Srn, Sgn, and Sbn are the red, green, and blue signal spectra; Hrn, Hgn, and Hbn are the complex spatial filters.

Fig. 5
Fig. 5

Multisignal encoding technique.

Fig. 6
Fig. 6

Sketch of multisignal spatial modulation encoding.

Fig. 7
Fig. 7

Multisignal parallel processing: Sn, input signal spectrum; Hn, complex spatial filter.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

T ( x , y ) = K ( 1 + 1 n n = 1 N cos ω x n ) ,
s ( x , y ) T ( x , y ) = K s ( x , y ) ( 1 + 1 n n = 1 N cos ω x n ) ·
E ( p , q ) = K S ( p , q ) + K 2 n n = 1 N S ( p n ± ω , q n ) ,
H 0 ( p , q ) = K 1 + K | S 0 ( p , q ) | cos [ x 0 p + ϕ 0 ( p , q ) ] ,
H n ( p n , q n ) = K 1 + K | S n ( p n ω , q n ) | cos [ x 0 p n + ϕ n ( p n ω , q ) ] , n = 1,2 , , N ,
S n ( p n , q n ) = | S n ( p n , q n ) | exp [ i ϕ n ( p n , q n ) ] , n = 0,1,2 , , N
E 0 ( p , q ) = C S ( p , q ) H 0 ( p , q ) ,
E n ( p n , q n ) = C S ( p n ω , q n ) H n ( p n , q n ) , n = 1,2 , , N .
g 0 ( x , y ) = s ( x , y ) + s ( x , y ) * s 0 ( x x 0 , y ) + s ( x , y ) * s 0 ( x + x 0 , y ) ,
g n ( x n , y n ) = s ( x n , y n ) exp ( i ω x n ) + s ( x n , y n ) × exp ( i ω x n ) * s n ( x n x 0 , y n ) exp ( i ω x n ) + s ( x n , y n ) exp ( i ω x n ) * s n ( x n + x 0 , y n ) × exp ( i ω x n ) , n = 1,2 , , N ,
E ( p , q ) = S r ( p , q ) + S g ( p , q ) + S b ( p , q ) + 1 2 n n = 1 N [ S r ( p n ± ω , q n ) + S g ( p n ± ω , q n ) + S b ( p n ± ω , q n ) ] ,
E ( α , β ) = S r ( λ r α , λ r β ) + S g ( λ g α , λ g β ) + S b ( λ b α , λ b β ) + 1 n n = 1 N [ S r ( α n ± λ r f 2 π ω , β n ) + S g ( α n ± λ g f 2 π ω , β n ) + S b ( α n ± λ b f 2 π ω , β n ) ] ,
T n ( x , y ) = K 1 [ n = 1 N s n ( x , y ) ( 1 + cos ω x n ) ] γ 1 ,
T p ( x , y ) = K 2 [ n = 1 N s n ( x , y ) ( 1 + cos ω x n ) ] γ 1 γ 2 ,
T ( x , y ) = K [ n = 1 N s n ( x , y ) ( 1 + cos ω x n ) ] ,
E ( p , q ) = n = 1 N [ S n ( p , q ) + 1 2 S n ( p n ± ω , q n ) ] ,
E ( α , β ) = n = 1 N [ S n ( α , β ) + 1 2 s n ( α n + λ f 2 π ω , β n ) ] .
E ( α , β ) = n = 1 N { S n ( λ r α , λ r β ) + S n ( λ g α , λ g β ) + S n ( λ b α , λ b β ) + 1 2 [ S n ( α n ± λ r f 2 π ω , β n ) + S n ( α n ± λ g f 2 π ω , β n ) + S n ( α n ± λ b f 2 π ω , β n ) ] } ·

Metrics