Abstract

The optical transmission characteristics of electroformed metal grids with inductive and capacitive cross patterns have been investigated in the far-infrared spectral region. The transmission characteristics of one-and two-grid devices are represented by transmission line theory parameters. Results are used to suggest construction guidelines for two-grid bandpass filters.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, Appl. Opt. 7, 1987 (1968).
    [CrossRef] [PubMed]
  2. See, for example, J. Mather, Astronaut. Aeronaut. 16, 60 (1978).
  3. S. P. Varma, K. D. Möller, Appl. Opt. 8, 1663 (1969).
    [CrossRef] [PubMed]
  4. R. Ulrich, Infrared Phys. 7, 37 (1967).
    [CrossRef]
  5. R. Ulrich, Appl. Opt. 8, 319 (1969).
    [CrossRef] [PubMed]
  6. M. Bottema, H. J. Bolle, paper presented at Aspen International Conference on Fourier Spectroscopy (1970), contribution 19.
  7. K. D. Möller, W. G. Rothchild, Far-Infrared Spectroscopy (Wiley-Interscience, New York, 1971), Chap. 3.
  8. R. Ulrich, T. J. Bridges, M. A. Pollack, Appl. Opt. 9, 2511 (1970).
    [CrossRef] [PubMed]
  9. V. D. Agrawal, W. A. Imbriale, IEEE Trans. Antennas Propag. AP-27, 466 (1979).
    [CrossRef]
  10. J. E. Davis, Infrared Phys. 20, 287 (1980).
    [CrossRef]

1980

J. E. Davis, Infrared Phys. 20, 287 (1980).
[CrossRef]

1979

V. D. Agrawal, W. A. Imbriale, IEEE Trans. Antennas Propag. AP-27, 466 (1979).
[CrossRef]

1978

See, for example, J. Mather, Astronaut. Aeronaut. 16, 60 (1978).

1970

1969

1968

1967

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

Agrawal, V. D.

V. D. Agrawal, W. A. Imbriale, IEEE Trans. Antennas Propag. AP-27, 466 (1979).
[CrossRef]

Bolle, H. J.

M. Bottema, H. J. Bolle, paper presented at Aspen International Conference on Fourier Spectroscopy (1970), contribution 19.

Bottema, M.

M. Bottema, H. J. Bolle, paper presented at Aspen International Conference on Fourier Spectroscopy (1970), contribution 19.

Bridges, T. J.

Davis, J. E.

J. E. Davis, Infrared Phys. 20, 287 (1980).
[CrossRef]

Imbriale, W. A.

V. D. Agrawal, W. A. Imbriale, IEEE Trans. Antennas Propag. AP-27, 466 (1979).
[CrossRef]

Mather, J.

See, for example, J. Mather, Astronaut. Aeronaut. 16, 60 (1978).

Möller, K. D.

S. P. Varma, K. D. Möller, Appl. Opt. 8, 1663 (1969).
[CrossRef] [PubMed]

K. D. Möller, W. G. Rothchild, Far-Infrared Spectroscopy (Wiley-Interscience, New York, 1971), Chap. 3.

Pollack, M. A.

Rothchild, W. G.

K. D. Möller, W. G. Rothchild, Far-Infrared Spectroscopy (Wiley-Interscience, New York, 1971), Chap. 3.

Ulrich, R.

Varma, S. P.

Appl. Opt.

Astronaut. Aeronaut.

See, for example, J. Mather, Astronaut. Aeronaut. 16, 60 (1978).

IEEE Trans. Antennas Propag.

V. D. Agrawal, W. A. Imbriale, IEEE Trans. Antennas Propag. AP-27, 466 (1979).
[CrossRef]

Infrared Phys.

J. E. Davis, Infrared Phys. 20, 287 (1980).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

Other

M. Bottema, H. J. Bolle, paper presented at Aspen International Conference on Fourier Spectroscopy (1970), contribution 19.

K. D. Möller, W. G. Rothchild, Far-Infrared Spectroscopy (Wiley-Interscience, New York, 1971), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Inductive and (b) capacitive cross grid pattern. Black areas are metallic, i.e., deposited copper.

Fig. 2
Fig. 2

Microphotographs of etched cross grids: (a) and (b) are 280 lines/in. and (c) is 150 lines/in.

Fig. 3
Fig. 3

Measured transmission of single inductive cross grid. Points are experimental; lines present theoretical fits. Parameters used to calculate the theoretical fit are given in Table I. For the 200-W cross grid, theoretical values above 70 cm−1 should be disregarded (see text).

Fig. 4
Fig. 4

Measured transmission of single inductive cross grid. Points are experimental; lines present theoretical fits. Parameters are given in Table I. For the 150-W cross grid, theoretical values above 70 cm−1 should be disregarded (see text).

Fig. 5
Fig. 5

Transmission of 280-lines/in. inductive grids. See Fig. 2 for photographs of 280 A and 280 B. Points are experimental; lines are theoretical fits. Parameters are given in Table II. The calculated transmission curve, labeled as 280 W (calc.), was generated using parameters chosen to lie between the values used for the 280 A and 280 B in Table II.

Fig. 6
Fig. 6

Transmission of capacitive cross grids. Points are experimental; curves are theoretical. Parameters are given in Table III.

Fig. 7
Fig. 7

Experimental (points) and theoretical (lines) transmission of 250-and 150-lines/in. inductive cross grids. Open circles and squares are individual 250 mesh crosses. Open triangles represent a two-grid filter composed of grids A and B separated by 45 μm. Solid inverted triangles represent a 150 mesh pair separated by 65 μm.

Fig. 8
Fig. 8

Calculated transmission of two 280-lines/in. inductive cross grids for three separation distances. Parameters for the individual grids are the same.

Fig. 9
Fig. 9

Measured transmission of two 250-line/in. inductive cross grids separated by 50 μm. Data points are our results; the solid line represents data obtained at higher resolution by J. Heaney (NASA Goddard).

Tables (4)

Tables Icon

Table I Parameters Used to Fit Transmission Line Theory to Measured Transmission of Single Inductive Cross Grids

Tables Icon

Table II Parameters Used to Calculate Transmission Curves in Fig. 5

Tables Icon

Table III Parameters Used to Fit Transmission Line Theory to Measured Transmission of Single Capacitive Cross Grids (Plotted in Fig. 6)

Tables Icon

Table IV Peak Transmission (%) of Two Inductive Cross Grid Filters with Various Separations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Y = 2 R ¯ c + j Ω Ξ c + 2 R ¯ i j Ξ i Ω ,
Ω = ω ω 0 ω 0 ω

Metrics