Abstract

The properties of bandpass filters for broadband photometry are reported in the 3–12-cm−1 frequency range. The filters are based on a combination of capacitive grids deposited on thick Mylar substrates and are designed to have very high out-of-band rejection. Low frequencies are blocked by a thick grill that consists of a hexagonal grid of circular holes in a thick metal plate.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Ulrich, Infrared Phys. 7, 37 (1967).
    [CrossRef]
  2. R. Ulrich, Infrared Phys. 7, 65 (1967).
    [CrossRef]
  3. R. Ulrich, Appl. Opt. 7, 1987 (1968).
    [CrossRef] [PubMed]
  4. D. Muehlner, R. Weiss, Phys. Rev. D: 7, 326 (1973).
    [CrossRef]
  5. S. E. Whitcomb, J. Keene, Appl. Opt. 19, 197 (1980).
    [CrossRef] [PubMed]
  6. K. D. Möller, W. G. Rothschild, Far Infrared Spectroscopy (Wiley, New York, 1971), p. 106.
  7. V. Y. Balakhanov, Sov. Phys. Dokl. 10, 788 (1966).
  8. R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
    [CrossRef]
  9. N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series 10 (McGraw-Hill, New York, 1951).
  10. D. M. Kearns, R. W. Beatty, Basic Theory of Waveguide Functions and Introductory Microwave Network Analysis (Pergamon, Oxford, 1967).
  11. This function is given incorrectly in Refs. 1, 2, and 6. The expressions in Ref. 7 and 9 are correct.
  12. Mylar is a trade name for polyethylene terephthalate.
  13. E. V. Loewenstein, D. R. Smith, Appl. Opt. 10: 577 (1971).
    [CrossRef] [PubMed]

1980 (1)

1973 (1)

D. Muehlner, R. Weiss, Phys. Rev. D: 7, 326 (1973).
[CrossRef]

1971 (1)

1968 (1)

1967 (2)

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 65 (1967).
[CrossRef]

1966 (1)

V. Y. Balakhanov, Sov. Phys. Dokl. 10, 788 (1966).

1963 (1)

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Balakhanov, V. Y.

V. Y. Balakhanov, Sov. Phys. Dokl. 10, 788 (1966).

Beatty, R. W.

D. M. Kearns, R. W. Beatty, Basic Theory of Waveguide Functions and Introductory Microwave Network Analysis (Pergamon, Oxford, 1967).

Genzel, L.

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Kearns, D. M.

D. M. Kearns, R. W. Beatty, Basic Theory of Waveguide Functions and Introductory Microwave Network Analysis (Pergamon, Oxford, 1967).

Keene, J.

Loewenstein, E. V.

Marcuvitz, N.

N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series 10 (McGraw-Hill, New York, 1951).

Möller, K. D.

K. D. Möller, W. G. Rothschild, Far Infrared Spectroscopy (Wiley, New York, 1971), p. 106.

Muehlner, D.

D. Muehlner, R. Weiss, Phys. Rev. D: 7, 326 (1973).
[CrossRef]

Renk, K. F.

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Rothschild, W. G.

K. D. Möller, W. G. Rothschild, Far Infrared Spectroscopy (Wiley, New York, 1971), p. 106.

Smith, D. R.

Ulrich, R.

R. Ulrich, Appl. Opt. 7, 1987 (1968).
[CrossRef] [PubMed]

R. Ulrich, Infrared Phys. 7, 65 (1967).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Weiss, R.

D. Muehlner, R. Weiss, Phys. Rev. D: 7, 326 (1973).
[CrossRef]

Whitcomb, S. E.

Appl. Opt. (3)

IEEE Trans. Microwave Theory Tech. (1)

R. Ulrich, K. F. Renk, L. Genzel, IEEE Trans. Microwave Theory Tech. MTT-11, 363 (1963).
[CrossRef]

Infrared Phys. (2)

R. Ulrich, Infrared Phys. 7, 37 (1967).
[CrossRef]

R. Ulrich, Infrared Phys. 7, 65 (1967).
[CrossRef]

Phys. Rev. D (1)

D. Muehlner, R. Weiss, Phys. Rev. D: 7, 326 (1973).
[CrossRef]

Sov. Phys. Dokl. (1)

V. Y. Balakhanov, Sov. Phys. Dokl. 10, 788 (1966).

Other (5)

K. D. Möller, W. G. Rothschild, Far Infrared Spectroscopy (Wiley, New York, 1971), p. 106.

N. Marcuvitz, Waveguide Handbook, MIT Radiation Laboratory Series 10 (McGraw-Hill, New York, 1951).

D. M. Kearns, R. W. Beatty, Basic Theory of Waveguide Functions and Introductory Microwave Network Analysis (Pergamon, Oxford, 1967).

This function is given incorrectly in Refs. 1, 2, and 6. The expressions in Ref. 7 and 9 are correct.

Mylar is a trade name for polyethylene terephthalate.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Equivalent circuit of a thin capacitive grid on the surface separating two dielectrics with admittances Y1 = n1 and Y2 = n2:

Resonant frequencyω0 = 2π/g
Normalized impedance of L and C at resonanceZ0 = ω0L = 1/ω0c
Generalized frequencyΩ = ω/ω0ω0/ω
Normalized admittanceY = 1/(R + jZ0Ω)
Grid admittance Y 0 = l / Z 0 = 2 ( n 1 2 + n 2 2 ) ln c s c
( π a g ).
Fig. 2
Fig. 2

Transmission line shunted by an equivalent admittance Y. Incident wave amplitudes are a1 and a2, and reflected wave amplitudes b1 and b2.

Fig. 3
Fig. 3

Transmission of a series of Mylar bandpass filters at 1.2 K. Each curve is labeled by the center frequency of the passband. All measurements were done using a polarizing interferometer at a nominal resolution of 0.7 cm−1. Solid curves are the measured filters, while the dashed lines result from a calculation using the equivalent circuit of Fig. 1 with an effective resonant frequency ω0 = 0.83 × 2π/g. Parameters of the various filters are given in Table II.

Fig. 4
Fig. 4

Near-millimeter absorption coefficient of Mylar. Measurement was made on a compressed stack of twenty sheets of 0.25-mm thick Mylar. Calculations show that these data are not sensitive to gaps between the sheets as large as 1 μm.

Fig. 5
Fig. 5

Near-millimeter absorption coefficient of soda-lime glass. Absorption coefficient is <1.0 cm−1 between 3 and 8 cm−1.

Fig. 6
Fig. 6

Transmission of a thick grill filter. This high pass filter consists of a pattern of 1.4-mm diam holes on a 1.6-mm spacing. Thickness is 3 mm. Filters act as a series of circular waveguides beyond cutoff. Filter has a well-defined peak with a transmission of 0.84 at ν ~ 1/g.

Fig. 7
Fig. 7

Overall responsivity of a system designed to measure the cosmic microwave background from a balloon. Five Mylar grid filters are used in combination with matched thick grill filters to produce the passbands shown. System includes soda-lime glass and black polyethylene for high frequency blocking. A 3He temperature composite bolometer is used as detector. Data were measured with a nominal resolution of 0.7 cm−1. Spectral output of our polarizing interferometer was assumed to be ∝ν2, and the constant of proportionality was evaluated by measuring the signal from a laboratory blackbody.

Tables (2)

Tables Icon

Table I Millimeter Wave Indices of Refraction of Some Common Dielectrics

Tables Icon

Table II Properties of Filters with Mylar Substrate Shown in Fig. 3

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b 1 = r 11 a 2 + r 12 b 2 ; a 1 = r 21 a 2 + r 22 b 2 .
r ˜ ( Y ) = 1 2 n 1 | Y + ( n 1 + n 2 ) Y + ( n 1 n 2 ) Y + ( n 1 n 2 ) Y + ( n 1 + n 2 ) | .
r ˜ ( d ) = | exp ( j γ ) 0 0 exp ( + j γ ) | ,

Metrics