Abstract

A detailed experimental study has been conducted on adaptive optical control methodologies inside a laser resonator. A comparison is presented of several optimization techniques using a multidither zonal coherent optical adaptive technique system within a laser resonator for the correction of astigmatism. A dramatic performance difference is observed when optimizing on beam quality compared with optimizing on power-in-the-bucket. Experimental data are also presented on proper selection criteria for dither frequencies when controlling phase front errors. The effects of hardware limitations and design considerations on the performance of the system are presented, and general conclusions and physical interpretations on the results are made when possible.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Freeman, R. J. Freiberg, H. R. Garcia, Opt. Lett. 2, 61 (1978).
    [Crossref] [PubMed]
  2. R. C. Harney, Appl. Opt. 17, 1671 (1978).
    [Crossref] [PubMed]
  3. R. R. Stephens, R. C. Lind, Opt. Lett. 3, 79 (1978).
    [Crossref] [PubMed]
  4. BQ is defined as the ratio of the measured reciprocal percentage PIB, which is normalized by the reciprocal percentage PIB of a uniform plane wave annulus corresponding to the geometrically predicted resonator output.
  5. PIB is the far-field power within the Airy disk of the outcoupled beam. Airy disk dimension is determined from the geometrically predicted near-field intensity pattern of the resonator.
  6. R. H. Freeman, H. R. Garcia, “High Speed Deformable Mirror System,” to be submitted to Appl. Opt.
  7. J. E. Pearson, W. B. Bridges, S. Hansen, T. A. Nussmeier, M. E. Pedinoff, Appl. Opt. 15, 611 (1976).
    [Crossref] [PubMed]
  8. K. E. Oughstun, “Intracavity Adaptive Optic Compensation of Phase Aberrations, Part 1: Analysis,” submitted to J. Opt. Soc. Am. (1981).
  9. J. E. Harvey, G. M. Callahan, Proc. Soc. Photo-Opt. Instrum. Eng. 141, 50 (1978).
  10. W. F. Krupke, W. R. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
    [Crossref]
  11. J. B. Shellan, D. A. Holmes, M. L. Bernabe, A. M. Simonoff, Appl. Opt. 19, 610 (1980).
    [Crossref] [PubMed]

1980 (1)

1978 (4)

1976 (1)

1969 (1)

W. F. Krupke, W. R. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[Crossref]

Bernabe, M. L.

Bridges, W. B.

Callahan, G. M.

J. E. Harvey, G. M. Callahan, Proc. Soc. Photo-Opt. Instrum. Eng. 141, 50 (1978).

Freeman, R. H.

R. H. Freeman, R. J. Freiberg, H. R. Garcia, Opt. Lett. 2, 61 (1978).
[Crossref] [PubMed]

R. H. Freeman, H. R. Garcia, “High Speed Deformable Mirror System,” to be submitted to Appl. Opt.

Freiberg, R. J.

Garcia, H. R.

R. H. Freeman, R. J. Freiberg, H. R. Garcia, Opt. Lett. 2, 61 (1978).
[Crossref] [PubMed]

R. H. Freeman, H. R. Garcia, “High Speed Deformable Mirror System,” to be submitted to Appl. Opt.

Hansen, S.

Harney, R. C.

Harvey, J. E.

J. E. Harvey, G. M. Callahan, Proc. Soc. Photo-Opt. Instrum. Eng. 141, 50 (1978).

Holmes, D. A.

Krupke, W. F.

W. F. Krupke, W. R. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[Crossref]

Lind, R. C.

Nussmeier, T. A.

Oughstun, K. E.

K. E. Oughstun, “Intracavity Adaptive Optic Compensation of Phase Aberrations, Part 1: Analysis,” submitted to J. Opt. Soc. Am. (1981).

Pearson, J. E.

Pedinoff, M. E.

Shellan, J. B.

Simonoff, A. M.

Sooy, W. R.

W. F. Krupke, W. R. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[Crossref]

Stephens, R. R.

Appl. Opt. (3)

IEEE J. Quantum Electron. (1)

W. F. Krupke, W. R. Sooy, IEEE J. Quantum Electron. QE-5, 575 (1969).
[Crossref]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. E. Harvey, G. M. Callahan, Proc. Soc. Photo-Opt. Instrum. Eng. 141, 50 (1978).

Other (4)

K. E. Oughstun, “Intracavity Adaptive Optic Compensation of Phase Aberrations, Part 1: Analysis,” submitted to J. Opt. Soc. Am. (1981).

BQ is defined as the ratio of the measured reciprocal percentage PIB, which is normalized by the reciprocal percentage PIB of a uniform plane wave annulus corresponding to the geometrically predicted resonator output.

PIB is the far-field power within the Airy disk of the outcoupled beam. Airy disk dimension is determined from the geometrically predicted near-field intensity pattern of the resonator.

R. H. Freeman, H. R. Garcia, “High Speed Deformable Mirror System,” to be submitted to Appl. Opt.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1
Fig. 1

Schematic diagram of experimental apparatus. A 13.6-m radius convex mirror (CVM) and a 19.6-m radius concave mirror (CCM) form the positive branch confocal unstable linear resonator which has two intracavity folding mirrors, the deformable mirror M1 and the aberration generator M2. The intracavity mode is sampled by a ZnSe splitter S1 monitored by an IR camera. The outcoupled beam is incident on folding mirror (FM), which is the deformable mirror during extracavity correction experiments and is then split into three beams for measurement of power through a far-field aperture A (the COAT feedback signal), far-field intensity profile using an IR camera I, and total power P.

Fig. 2
Fig. 2

Experimental resonator test apparatus.

Fig. 3
Fig. 3

Diagram of 10-cm diam, convectively cooled, closed cycle, electric discharge CO2 gain medium.

Fig. 4
Fig. 4

Iso-gain contour plot of the 10-cm diam gain medium over the 8.8-cm diam resonator mode volume.

Fig. 5
Fig. 5

Beam footprint on DM for ECAO and ICAO configuration.

Fig. 6
Fig. 6

Control loop block diagram (PIB optimization).

Fig. 7
Fig. 7

Control loop block diagram (BQ optimization).

Fig. 8
Fig. 8

Control algorithm dependence of beam quality during astigmatism correction.

Fig. 9
Fig. 9

Control algorithm dependence of output power during astigmatism correction.

Fig. 10
Fig. 10

ECAO/ICAO (PIB/BQ) comparison—based on average performance for static astigmatism and thermally induced defocus correction studies.

Fig. 11
Fig. 11

Intracavity mode structure with and without deformable mirror.

Fig. 12
Fig. 12

Deformable mirror figure influence on resonator mode structure.

Fig. 13
Fig. 13

Intracavity mode during closed loop correction for astigmatism, BQ optimized ICAO.

Fig. 14
Fig. 14

Intracavity mode during closed loop correction for astigmatism, PIB optimized ICAO.

Fig. 15
Fig. 15

PSD of power-in-the-bucket optimization.

Fig. 16
Fig. 16

PSD of BQ and total power for PIB optimization.

Fig. 17
Fig. 17

PSD of beam quality for BQ optimization.

Fig. 18
Fig. 18

PSD of power-in-the-bucket and total power for BQ optimization.

Tables (3)

Tables Icon

Table 1 Resonator Parameters

Tables Icon

Table II Gain Medium Parameters

Tables Icon

Table III Deformable Mirror Dither Assignments

Metrics