Abstract

Two concepts new in square bandpass design make the design process easier and more systematic. One is the use of adjacent high-order rejection bands. The second is the use of effective index ratio. This paper extends the work of L. I. Epstein [ J. Opt. Soc. Am. 42806 ( 1952): “ The Design of Optical Filters”] and A. Thelen [ J. Opt. Soc. Am. 501533 ( 1966): “ Equivalent Layers in Multilayer Filters”].

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. I. Epstein, J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  2. A. Thelen, J. Opt. Soc. Am. 50, 1533 (1966).
    [CrossRef]

1966 (1)

A. Thelen, J. Opt. Soc. Am. 50, 1533 (1966).
[CrossRef]

1952 (1)

Epstein, L. I.

Thelen, A.

A. Thelen, J. Opt. Soc. Am. 50, 1533 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

L. I. Epstein, J. Opt. Soc. Am. 42, 806 (1952).
[CrossRef]

A. Thelen, J. Opt. Soc. Am. 50, 1533 (1966).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

A two-to-one stack treated as a square bandpass.

Fig. 2
Fig. 2

Square bandpass showing second- and third-order rejection bands.

Fig. 3
Fig. 3

Square bandpass showing third- and fourth-order rejection bands.

Fig. 4
Fig. 4

Square bandpass showing fourth- and fifth-order rejection bands.

Fig. 5
Fig. 5

Variation of potential passband width.

Fig. 6
Fig. 6

Performance of three preliminary designs.

Fig. 7
Fig. 7

Final design using 3, 4, and 5 basic periods.

Fig. 8
Fig. 8

Rejection levels of final designs.

Tables (1)

Tables Icon

Table I Data for the Preliminary Designs Shown in Fig. 6

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ = ( ( n 1 ) ( n 3 ) 2 ( n m 2 ) 2 ( n 2 ) 2 ( n 4 ) 2 ( n m 1 ) ) ± ( 1 m 2 )
ρ = ( N 2 n 2 ( n 1 ) 3 ) ± ( 1 m 2 )
N = n 1 n 3 n 5 n m n 2 n 4 n m 1 .
T ρ l l log T log ρ .

Metrics