Abstract

A simple method of constructing a holographic filter is described which transforms a Gaussian into a uniform beam and conserves 30% of the beam power.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Collier, C. R. Burckhardt, L. N. Lin, Optical Holography (Academic, New York, 1971).
  2. Y. Belvaux, S. P. S. Virdi, Opt. Commun. 15, 193 (1975).
    [CrossRef]
  3. R. L. Lamberts, Appl. Opt. 11, 33 (1972).
    [CrossRef]
  4. A. Graube, Appl. Opt. 13, 2942 (1974).
    [CrossRef]

1975 (1)

Y. Belvaux, S. P. S. Virdi, Opt. Commun. 15, 193 (1975).
[CrossRef]

1974 (1)

1972 (1)

Belvaux, Y.

Y. Belvaux, S. P. S. Virdi, Opt. Commun. 15, 193 (1975).
[CrossRef]

Burckhardt, C. R.

R. J. Collier, C. R. Burckhardt, L. N. Lin, Optical Holography (Academic, New York, 1971).

Collier, R. J.

R. J. Collier, C. R. Burckhardt, L. N. Lin, Optical Holography (Academic, New York, 1971).

Graube, A.

Lamberts, R. L.

Lin, L. N.

R. J. Collier, C. R. Burckhardt, L. N. Lin, Optical Holography (Academic, New York, 1971).

Virdi, S. P. S.

Y. Belvaux, S. P. S. Virdi, Opt. Commun. 15, 193 (1975).
[CrossRef]

Appl. Opt. (2)

Opt. Commun. (1)

Y. Belvaux, S. P. S. Virdi, Opt. Commun. 15, 193 (1975).
[CrossRef]

Other (1)

R. J. Collier, C. R. Burckhardt, L. N. Lin, Optical Holography (Academic, New York, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Normalized transmitted intensity vs distance to the center; η is the efficiency in the center of the plate.

Fig. 2
Fig. 2

Characteristic curve: optical path vs exposition of the Agfa-Gevaert 8E-75 plate, processed as explained in the text. This characteristic corresponds to the inner image which, as has been shown,3 controls the efficiency of volume and phase holograms. The chosen point of work is marked.

Fig. 3
Fig. 3

Measurement of the Gaussian beam Ii and of the transmitted It, both normalized. Losses have not been taken into account.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η ( x ) = sin 2 [ π cos θ 0 δ m exp ( 2 x 2 / w 2 ) ] ,
τ = 1 η = cos 2 [ π cos θ 0 δ m exp ( 2 x 2 / w 2 ) ] ,
I t ( x ) = τ ( x ) I ( x ) = I m exp ( 2 x 2 / w 2 ) × cos 2 [ π cos θ 0 δ m exp ( 2 x 2 / w 2 ) ] .
η m = sin 2 [ π cos θ 0 δ m ] .

Metrics