Abstract

The relation of reflectance to backscatter and absorption parameters is investigated for waters more turbid than those of previous investigations. Experimental data are examined for river waters in which beam attenuation values range from 8.9 to 18.9 m−1 at 550 nm. Attenuation, absorption, backscatter, and irradiance reflectance spectral properties are presented for wavelengths between 450 and 800 nm. Comparisons of reflectance with backscatter to absorption ratio and backscatter with absorption plus backscatter ratio indicate that data for turbid waters do not fit linear or polynomial models which are presently available in the literature.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Gordon, O. B. Brown, M. M. Jacobs, Appl. Opt. 14, 417 (1975).
    [CrossRef] [PubMed]
  2. A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
    [CrossRef]
  3. R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).
  4. E. Friedman, L. Poole, A. Cherdak, W. Houghton, Appl. Opt. 19, 1688 (1980).
    [CrossRef] [PubMed]
  5. T. J. Petzold, “Volume Scattering Functions for Selected Waters,” SIO Ref. 72-78, Visibility Laboratory, San Diego, Calif. 92152 (Oct.1972).
  6. S. C. Jain, J. R. Miller, Appl. Opt. 16, 202 (1977).
    [CrossRef] [PubMed]
  7. N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).
  8. J. R. Miller et al., Remote Sensing Environ. 6, 183 (1977).
    [CrossRef]
  9. R. W. Austin, Ocean Opt. 208, 170 (1979).
  10. H. R. Gordon et al.Ocean Opt. 208, 14 (1979).

1980

1979

R. W. Austin, Ocean Opt. 208, 170 (1979).

H. R. Gordon et al.Ocean Opt. 208, 14 (1979).

1977

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

J. R. Miller et al., Remote Sensing Environ. 6, 183 (1977).
[CrossRef]

S. C. Jain, J. R. Miller, Appl. Opt. 16, 202 (1977).
[CrossRef] [PubMed]

1975

Austin, R. W.

R. W. Austin, Ocean Opt. 208, 170 (1979).

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

Brown, O. B.

Cherdak, A.

Friedman, E.

Gordon, H. R.

Houghton, W.

Jacobs, M. M.

Jain, S. C.

Jerlov, N. G.

N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).

Miller, J. R.

S. C. Jain, J. R. Miller, Appl. Opt. 16, 202 (1977).
[CrossRef] [PubMed]

J. R. Miller et al., Remote Sensing Environ. 6, 183 (1977).
[CrossRef]

Morel, A.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Petzold, T. J.

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

T. J. Petzold, “Volume Scattering Functions for Selected Waters,” SIO Ref. 72-78, Visibility Laboratory, San Diego, Calif. 92152 (Oct.1972).

Poole, L.

Prieur, L.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Appl. Opt.

Limnol. Oceanogr.

A. Morel, L. Prieur, Limnol. Oceanogr. 22, 709 (1977).
[CrossRef]

Ocean Opt.

R. W. Austin, T. J. Petzold, Ocean Opt. 64, 50 (1975).

R. W. Austin, Ocean Opt. 208, 170 (1979).

H. R. Gordon et al.Ocean Opt. 208, 14 (1979).

Remote Sensing Environ.

J. R. Miller et al., Remote Sensing Environ. 6, 183 (1977).
[CrossRef]

Other

T. J. Petzold, “Volume Scattering Functions for Selected Waters,” SIO Ref. 72-78, Visibility Laboratory, San Diego, Calif. 92152 (Oct.1972).

N. G. Jerlov, Optical Oceanography (Elsevier, New York, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Attenuation, absorption, and backscattering coefficients.

Fig. 2
Fig. 2

Comparison of calculated scattering coefficients.

Fig. 3
Fig. 3

bb/a, bb/b, and ω0 characteristics.

Fig. 4
Fig. 4

Subsurface irradiance reflectance characteristics.

Fig. 5
Fig. 5

Comparison of reflectance with bb/a.

Fig. 6
Fig. 6

Comparison of reflectance with bb/(a + bb).

Tables (2)

Tables Icon

Table I Conditions at Test Site

Tables Icon

Table II Volume Scattering Function Values

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

R ( 0 - ) = E u / E d ,
R ( 0 - ) = n = 0 n = 3 r n ( 0 ) ( b b a + b b ) n = R ( 0 - ) GBJ ,
R ( 0 - ) = 0.33 b b a = R ( 0 - ) PM .
b b = 2 π π / 2 π β ( θ ) sin θ d θ .
b = c - a ;
b = 2 π 0 π β ( θ ) sin θ d θ .
L u = L z - 0.02 L sky .
ρ u = L u / L s o .
R ( 0 + ) 0.52 R ( 0 - ) .
R ( 0 - ) 1.92 ( L z - 0.02 L sky ) L s o .

Metrics