Abstract

By comparing experimental and theoretical values of the radiative scattering cross sections of spherical particles over a wavelength range of 0.40–0.70 μm, both the scattering particle distribution function and concentration as well as the scattering coefficient are obtained. The experimental cross sections are derived from transmission data by using monodispersed polystyrene latex particles immersed in distilled water and a standard spectrophotometer. A discrete bimodal particle size distribution is used to account for coagulation. It is adjusted to yield the correct distribution function by making the difference between the experimental and theoretical cross section essentially constant with wavelength. The constant difference is proportional to the measurement error in the particle volume concentration and is easily eliminated by correcting the concentration. In addition, the scattering coefficient for the medium is obtained as a function of wavelength.

© 1981 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Retrieving the real refractive index of mono- and polydisperse colloids from reflectance near the critical angle

Benjamin E. Reed, Roy G. Grainger, Daniel M. Peters, and Andrew J. A. Smith
Opt. Express 24(3) 1953-1972 (2016)

Multiple Light Scattering by Spherical Dielectric Particles*

David H. Woodward
J. Opt. Soc. Am. 54(11) 1325-1331 (1964)

Random media characterization using the analysis of diffusing light data on the basis of an effective medium model

Dmitry A. Zimnyakov, Alexander B. Pravdin, Liana V. Kuznetsova, Vyacheslav I. Kochubey, Valery V. Tuchin, Ruikang K. Wang, and Olga V. Ushakova
J. Opt. Soc. Am. A 24(3) 711-723 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription