Abstract

Several monochromator designs are presented in which the beam is incident on the grating nearly parallel to the grooves. The efficiency of such mountings, when obeying the blaze condition, is much higher than that of classical arrangements. Because only the Snell’s components of the angular coordinates are varied, this high efficiency is found over the complete wavelength range. With the designs described the wavelength region from 0.6 to 100 nm can be covered without interchanging gratings. For each wavelength the spectral resolution can be increased to ~104. Entrance and exit slit positions and the corresponding beam orientations are fixed.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).
  2. O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).
  3. W. Werner, “Imaging Properties of Diffraction Gratings,” Thesis, Delft, The Netherlands (1970).
  4. J. H. Dijkstra, W. Werner, in Proceedings, IA U Symposium Minchen 1970: New Techniques in Space Astronomy, F. Labuhn, R. Lüst Eds., (D. Reidel Publishing Co., Dordrecht, Holland (1971), p. 180.
  5. D. Maystre, R. Petit, J. Spectrosc. Soc. Jpn. 23, 61 (1974).
  6. W. Werner, Appl. Opt. 16, 2078 (1977).
    [CrossRef] [PubMed]
  7. M. Nevibre, P. Vincent, D. Maystre, Appl. Opt. 17, 843 (1978).
    [CrossRef]
  8. R. F. Malina, W. Cash, Appl. Opt. 17, 3309 (1978).
    [CrossRef] [PubMed]
  9. M. Nevibre, D. Maystre, W. R. Hunter, J. Opt. Soc. Am. 68, 1106 (1978).
    [CrossRef]
  10. P. Vincent, M. Nevibre, D. Maystre, Appl. Opt. 18, 1780 (1979).
    [CrossRef] [PubMed]
  11. L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
    [CrossRef]
  12. E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

1979 (1)

1978 (3)

1977 (1)

1974 (1)

D. Maystre, R. Petit, J. Spectrosc. Soc. Jpn. 23, 61 (1974).

1969 (1)

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

1967 (1)

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).

1964 (2)

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Brytov, I. A.

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).

Canfield, L. R.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Cash, W.

Dijkstra, J. H.

J. H. Dijkstra, W. Werner, in Proceedings, IA U Symposium Minchen 1970: New Techniques in Space Astronomy, F. Labuhn, R. Lüst Eds., (D. Reidel Publishing Co., Dordrecht, Holland (1971), p. 180.

Ershov, O. A.

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

Hass, G.

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Hunter, W. R.

M. Nevibre, D. Maystre, W. R. Hunter, J. Opt. Soc. Am. 68, 1106 (1978).
[CrossRef]

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

Kovalyeva, E. A.

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

Lukirskii, A. P.

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

Lyakhovskaya, I. I.

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

Malina, R. F.

Maystre, D.

Nevibre, M.

Petit, R.

D. Maystre, R. Petit, J. Spectrosc. Soc. Jpn. 23, 61 (1974).

Savinov, E. P.

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

Shepelev, Yu. F.

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

Vincent, P.

Werner, W.

W. Werner, Appl. Opt. 16, 2078 (1977).
[CrossRef] [PubMed]

W. Werner, “Imaging Properties of Diffraction Gratings,” Thesis, Delft, The Netherlands (1970).

J. H. Dijkstra, W. Werner, in Proceedings, IA U Symposium Minchen 1970: New Techniques in Space Astronomy, F. Labuhn, R. Lüst Eds., (D. Reidel Publishing Co., Dordrecht, Holland (1971), p. 180.

Appl. Opt. (4)

J. Opt. Soc. Am. (1)

J. Phys. (1)

L. R. Canfield, G. Hass, W. R. Hunter, J. Phys. 25, 124 (1964).
[CrossRef]

J. Spectrosc. Soc. Jpn. (1)

D. Maystre, R. Petit, J. Spectrosc. Soc. Jpn. 23, 61 (1974).

Opt. Spectrosc. (3)

E. P. Savinov, I. I. Lyakhovskaya, O. A. Ershov, E. A. Kovalyeva, Opt. Spectrosc. 27, 179 (1969).

A. P. Lukirskii, E. P. Savinov, O. A. Ershov, Yu. F. Shepelev, Opt. Spectrosc. 16, 168 (1964).

O. A. Ershov, I. A. Brytov, A. P. Lukirskii, Opt. Spectrosc. 22, 66 (1967).

Other (2)

W. Werner, “Imaging Properties of Diffraction Gratings,” Thesis, Delft, The Netherlands (1970).

J. H. Dijkstra, W. Werner, in Proceedings, IA U Symposium Minchen 1970: New Techniques in Space Astronomy, F. Labuhn, R. Lüst Eds., (D. Reidel Publishing Co., Dordrecht, Holland (1971), p. 180.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Vertical distribution of the radiation at several wavelengths.

Fig. 2
Fig. 2

Calculated spectral distribution of the Dutch synchrotron source (energy 1.5 GeV, bending radius 4.17 m, beam current 500 mA, λc = 0.69 nm).

Fig. 3
Fig. 3

Applied coordinate systems: x and x′ axes are perpendicular to the grooves; y and y′ axes are parallel to the grooves; z and z′ axes are perpendicular to the grating surface. The diffraction components ψ and ψ′ are chosen equal to the blaze angle ψb. The Snell’s components θ and θ′ are varied for the wavelength variation.

Fig. 4
Fig. 4

Optical arrangement of the monochromator.

Fig. 5
Fig. 5

Instrumental efficiency of the monochromators as a function of the wavelength. All surfaces are coated with gold: A, arrangement with one grating of 304-mm length; B, arrangement with one grating of 102-mm length; C, arrangement with two gratings of 304-mm length.

Tables (4)

Tables Icon

Table I Dimensions of the Optical Components

Tables Icon

Table II Reduction Factor for the Instrumental Efficiency of the Arrangement with One Grating

Tables Icon

Table III Possible Spectral Resolutions with an Arrangement Based on Higher-Order Images

Tables Icon

Table IV Reduction Factor for the Instrumental Efficiency of the Arrangement with Two Gratings

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

x = ρ cos θ sin ψ ,             y = ρ sin θ ,             z = ρ cos θ cos ψ .
θ = - θ .
sin ψ + sin ψ = ( m λ ) / ( d cos θ ) ,
λ Δ λ = 2 tan ψ b cos θ δ s ,
4 α 1 = 4 α 2 - 2 ( 90 ° - θ ) .
0.60 nm < λ < 20 nm , 0.26 ° < ( 90 ° - θ ) < 9.0 ° , 1.63 ° < α 2 < 6.0 ° .
45 < λ / Δ λ < 1500 ( 100 - μ m slits ) , 220 < λ / Δ λ < 7500 ( 20 - μ m slits ) .

Metrics