Abstract

A fully mobile remote-sensing system based on the lidar principle is described. With this system, atmospheric probing using Mie scattering, differential absorption, or Raman techniques can be performed yielding information on atmospheric pollutants or general atmospheric parameters. The system incorporates a powerful Nd:YAG laser pumping a dye laser and is equipped with a fixed Newtonian telescope used in conjunction with a flat steering mirror. The lidar signals are electrically recorded using a fast-transient digitizer and are processed by a minicomputer, which also controls the laser, the chosen measuring direction, and the output media. Examples of measurements on atmospheric NO2 and SO2 are given.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).
  2. S. Svanberg, Contemp. Phys. 21, 541 (1980).
    [CrossRef]
  3. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
    [CrossRef] [PubMed]
  4. L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).
  5. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).
  6. E. Almqvist, S. Svanberg, Investigation on Operational Systems for Remote Sensing of Air- and Water-Pollutants (Swedish Space Corp., Solna1977) (in Swedish).
  7. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).
  8. K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-atom Structures and in Environmental Monitoring,” Ph.D. dissertation, U. Gothenburg (1980).
  9. J. Harms, W. Lahmann, C. Weitkamp, Appl. Opt. 17, 1131 (1978).
    [CrossRef] [PubMed]
  10. R. J. Allen, W. E. Evans, Rev. Sci. Instrum. 43, 1422 (1972).
    [CrossRef]
  11. P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
    [CrossRef]
  12. B. W. Jolliffe, P. T. Woods, Abstract, Ninth International Laser Radar Conference, Munich, DFVLR, 1979.
  13. K. Fredriksson, A. Hågård, to be published.

1980 (1)

S. Svanberg, Contemp. Phys. 21, 541 (1980).
[CrossRef]

1979 (1)

1978 (2)

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

J. Harms, W. Lahmann, C. Weitkamp, Appl. Opt. 17, 1131 (1978).
[CrossRef] [PubMed]

1972 (1)

R. J. Allen, W. E. Evans, Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Allen, R. J.

R. J. Allen, W. E. Evans, Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Almqvist, E.

E. Almqvist, S. Svanberg, Investigation on Operational Systems for Remote Sensing of Air- and Water-Pollutants (Swedish Space Corp., Solna1977) (in Swedish).

Celander, L.

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).

Evans, W. E.

R. J. Allen, W. E. Evans, Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Fredriksson, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).

K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-atom Structures and in Environmental Monitoring,” Ph.D. dissertation, U. Gothenburg (1980).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

K. Fredriksson, A. Hågård, to be published.

Galle, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

Hågård, A.

K. Fredriksson, A. Hågård, to be published.

Harms, J.

Jolliffe, B. W.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

B. W. Jolliffe, P. T. Woods, Abstract, Ninth International Laser Radar Conference, Munich, DFVLR, 1979.

Lahmann, W.

Measures, R. M.

R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).

Nyström, K.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

Öström, B.

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

Svanberg, S.

S. Svanberg, Contemp. Phys. 21, 541 (1980).
[CrossRef]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, Appl. Opt. 18, 2998 (1979).
[CrossRef] [PubMed]

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).

E. Almqvist, S. Svanberg, Investigation on Operational Systems for Remote Sensing of Air- and Water-Pollutants (Swedish Space Corp., Solna1977) (in Swedish).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

Weitkamp, C.

Woods, P. T.

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

B. W. Jolliffe, P. T. Woods, Abstract, Ninth International Laser Radar Conference, Munich, DFVLR, 1979.

Appl. Opt. (2)

Contemp. Phys. (1)

S. Svanberg, Contemp. Phys. 21, 541 (1980).
[CrossRef]

Opt. Laser Technol. (1)

P. T. Woods, B. W. Jolliffe, Opt. Laser Technol. 10, 25 (1978).
[CrossRef]

Rev. Sci. Instrum. (1)

R. J. Allen, W. E. Evans, Rev. Sci. Instrum. 43, 1422 (1972).
[CrossRef]

Other (8)

B. W. Jolliffe, P. T. Woods, Abstract, Ninth International Laser Radar Conference, Munich, DFVLR, 1979.

K. Fredriksson, A. Hågård, to be published.

R. M. Measures, in Analytical Laser Spectroscopy, N. Omenetto, Ed. (Wiley, New York, 1979).

L. Celander, K. Fredriksson, B. Galle, S. Svanberg, Göteborg Institute of Physics Reports GIPR-149 (1978).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, B. Öström, Göteborg Institute of Physics Reports GIPR-162 (1978).

E. Almqvist, S. Svanberg, Investigation on Operational Systems for Remote Sensing of Air- and Water-Pollutants (Swedish Space Corp., Solna1977) (in Swedish).

K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, unpublished report, 1978 (in Swedish).

K. Fredriksson, “Laser Spectroscopy Applied in Studies of Alkali-atom Structures and in Environmental Monitoring,” Ph.D. dissertation, U. Gothenburg (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Mobile lidar system.

Fig. 2
Fig. 2

Schematic of mobile laboratory.

Fig. 3
Fig. 3

Optical and electronic arrangements of lidar system.

Fig. 4
Fig. 4

Signal flow chart diagram.

Fig. 5
Fig. 5

Part of the computer program for DIAL measurements. Program structure is made up of interrupt routines.

Fig. 6
Fig. 6

Nitrogen dioxide DIAL measurement of a smokestack plume. Lidar is pointed just above the top of the smoke stack at a distance of 1350 m. Two lidar signals are shown to the left, and the DIAL curve is displayed at the upper right in the figure. Nitrogen dioxide is integrated across the plume and is shown as a step in the lower right curve.

Fig. 7
Fig. 7

DIAL measurement of sulfur dioxide content in a smokestack plume from a cement plant. Lidar signals, divided DIAL curve, and integrated sulfur dioxide content as a function of the distance are shown.

Fig. 8
Fig. 8

Measurement of diffuse emission of sulfur dioxide at a paper mill. Lidar signals and DIAL curve are shown, together with the DIAL evaluated concentration as a function of distance. Concentration curve was evaluated with a distance resolution of 100 m, which was adequate in this case.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P λ ( R , Δ R ) = C W σ b N ( R ) Δ R R 2 × exp { - 2 0 R [ σ ( λ ) n ( r ) + σ a N ( r ) ] d r } .
P λ abs ( R ) P λ ref ( R ) = C · exp { - 2 0 R [ σ ( λ abs ) - σ ( λ ref ) ] n ( r ) d r } ,

Metrics