Abstract

An annular-aperture wide-field camera, consisting of a spherical mirror and an annular aperture stop at its center of curvature (essentially a correctorless Schmidt camera), has been shown through analysis and laboratory tests to be a useful imaging device in the far and extreme UV, where the efficiencies of conventional refractive correctors and of reflective mirror coatings are relatively low.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Epstein, Sky Telesc. 33, 203 (1967).
  2. G. R. Carruthers, Appl. Opt. 8, 633 (1969).
    [CrossRef] [PubMed]
  3. G. R. Carruthers, Appl. Opt. 12, 2501 (1973).
    [CrossRef] [PubMed]
  4. G. R. Carruthers, Space Sci. Instrum. 4, 3 (1978).
  5. G. R. Carruthers, in Instrumentation in Astronomy-III, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 304 (1979); Opt. Eng. 18, 638 (1979).
  6. W. R. Hunter, D. W. Angel, R. Tousey, Appl. Opt. 4, 891 (1965).
    [CrossRef]
  7. G. Hass, W. R. Hunter, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, D.C., 1974), p. 525.
  8. J. B. Sidgwick, Amateur Astronomer’s Handbook (Faber & Faber, London, 1961), p. 69.

1979 (1)

G. R. Carruthers, in Instrumentation in Astronomy-III, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 304 (1979); Opt. Eng. 18, 638 (1979).

1978 (1)

G. R. Carruthers, Space Sci. Instrum. 4, 3 (1978).

1973 (1)

1969 (1)

1967 (1)

L. Epstein, Sky Telesc. 33, 203 (1967).

1965 (1)

Angel, D. W.

Carruthers, G. R.

G. R. Carruthers, in Instrumentation in Astronomy-III, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 304 (1979); Opt. Eng. 18, 638 (1979).

G. R. Carruthers, Space Sci. Instrum. 4, 3 (1978).

G. R. Carruthers, Appl. Opt. 12, 2501 (1973).
[CrossRef] [PubMed]

G. R. Carruthers, Appl. Opt. 8, 633 (1969).
[CrossRef] [PubMed]

Epstein, L.

L. Epstein, Sky Telesc. 33, 203 (1967).

Hass, G.

G. Hass, W. R. Hunter, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, D.C., 1974), p. 525.

Hunter, W. R.

W. R. Hunter, D. W. Angel, R. Tousey, Appl. Opt. 4, 891 (1965).
[CrossRef]

G. Hass, W. R. Hunter, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, D.C., 1974), p. 525.

Sidgwick, J. B.

J. B. Sidgwick, Amateur Astronomer’s Handbook (Faber & Faber, London, 1961), p. 69.

Tousey, R.

Appl. Opt. (3)

Instrumentation in Astronomy-III (1)

G. R. Carruthers, in Instrumentation in Astronomy-III, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 304 (1979); Opt. Eng. 18, 638 (1979).

Sky Telesc. (1)

L. Epstein, Sky Telesc. 33, 203 (1967).

Space Sci. Instrum. (1)

G. R. Carruthers, Space Sci. Instrum. 4, 3 (1978).

Other (2)

G. Hass, W. R. Hunter, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, D.C., 1974), p. 525.

J. B. Sidgwick, Amateur Astronomer’s Handbook (Faber & Faber, London, 1961), p. 69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Diagram illustrating image formation by a spherical mirror of radius Rs. Here fa is the focal length for a paraxial ray, fp that for a peripheral ray, and rpa is the image radius (defined by the peripheral ray) at the paraxial focus.

Fig. 2
Fig. 2

Image diameter, as determined by spherical aberration, computed for a full aperture of outer radius R2 and for annular apertures of inner and outer radii R1 and R2 [plotted vs Rav = (R1 + R2)/2].

Fig. 3
Fig. 3

Diagram illustrating image formation by a spherical mirror and annular aperture having inner and outer radii R1 and R2. The least circle of confusion (LCC) occurs approximately halfway between the foci of the inner and outer rays and is about half of the image diameter at either focus.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

sin α = ( R p / R s )             sin 2 α = 2     sin α cos α , cos α = ( R s - Δ ) / R s or Δ = R s ( 1 - cos α ) ,
f p = R p cot 2 α + R s ( 1 - cos α ) , f p = R s ( sin α cot 2 α + 1 - cos α ) ,
Δ f = f a - f p = ( R s / 2 ) - R s ( sin α cot 2 α + 1 - cos α ) = R s ( cos α - sin α cot 2 α - ½ ) .
r p a = Δ f sin 2 α = R s sin 2 α ( cos α - sin α cot 2 α - ½ ) .
Δ f = f 1 - f 2 = R s [ ( cos α 1 - cos α 2 ) - ( sin α 1 cot 2 α 1 - sin α 2 cot 2 α 2 ) ] , r 12 Δ f sin 2 α av ( assuming R 2 - R 1 R 2 or R 1 ) ,

Metrics