Abstract

A method is proposed for determining the core diameter, numerical aperture, and cutoff wavelength of single-mode fibers using the end separation loss measured at two light wavelengths. A spacer with adequate end separation is used to reduce the fluctuation in connection losses caused by multiple Fresnel reflections between the fiber end faces and by small lateral offsets. The cutoff wavelengths of four 2-m long fibers measured by this method agreed with those in which abrupt changes in the near-field patterns were observed.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Marcuse, H. M. Presby, Appl. Opt. 18, 14 (1979).
    [CrossRef] [PubMed]
  2. W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
    [CrossRef]
  3. K. Hotate, T. Okoshi, Appl. Opt. 18, 3265 (1979).
    [CrossRef] [PubMed]
  4. H. Matsumura, T. Suganuma, Appl. Opt. 19, 3151 (1980).
    [CrossRef] [PubMed]
  5. Y. Murakami, A. Kawana, H. Tsuchiya, Appl. Opt. 18, 1101 (1979).
    [CrossRef] [PubMed]
  6. D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).
  7. S. Masuda, Appl. Opt. 19, 2435 (1980).
    [CrossRef] [PubMed]
  8. A. A. Grau, J. Soc. Ind. Appl. Math. No. 2, 50, 11 (1963).
  9. C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1956).
  10. A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1130 (1969).
    [CrossRef]
  11. H. Kogelnik, Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964), 333.

1980 (2)

1979 (3)

1977 (2)

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

1969 (1)

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1130 (1969).
[CrossRef]

1963 (1)

A. A. Grau, J. Soc. Ind. Appl. Math. No. 2, 50, 11 (1963).

Gambling, W. A.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

Grau, A. A.

A. A. Grau, J. Soc. Ind. Appl. Math. No. 2, 50, 11 (1963).

Hotate, K.

Kawana, A.

Kogelnik, H.

H. Kogelnik, Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964), 333.

Lanczos, C.

C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1956).

Marcuse, D.

D. Marcuse, H. M. Presby, Appl. Opt. 18, 14 (1979).
[CrossRef] [PubMed]

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Masuda, S.

Matsumura, H.

H. Matsumura, T. Suganuma, Appl. Opt. 19, 3151 (1980).
[CrossRef] [PubMed]

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

Murakami, Y.

Norman, S. R.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

Okoshi, T.

Payne, D. N.

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

Presby, H. M.

Snyder, A. W.

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1130 (1969).
[CrossRef]

Suganuma, T.

Tsuchiya, H.

Appl. Opt. (5)

Bell Syst. Tech. J. (1)

D. Marcuse, Bell Syst. Tech. J. 56, 703 (1977).

Electron. Lett. (1)

W. A. Gambling, D. N. Payne, H. Matsumura, S. R. Norman, Electron. Lett. 13, No. 5, 133 (1977).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1130 (1969).
[CrossRef]

J. Soc. Ind. Appl. Math. No. 2 (1)

A. A. Grau, J. Soc. Ind. Appl. Math. No. 2, 50, 11 (1963).

Other (2)

C. Lanczos, Applied Analysis (Prentice-Hall, Englewood Cliffs, N.J., 1956).

H. Kogelnik, Coupling and Conversion Coefficients for Optical Modes in Quasi-Optics,” in Microwave Research Institute Symposia Series, Vol. 14, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1964), 333.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup of a proposed method of measuring fiber parameters: (a) experimental setup; (b) mechanical configuration of a connector. A ring spacer is inserted between the fiber end faces to give a suitable amount of end separation.

Fig. 2
Fig. 2

Connection loss increment by lateral offset. L is the end separation loss when no lateral offset and tilt angle are accompanied by the connection. The single-mode fiber (1 of Table II) is used. A semiconductor laser diode with a 1.3-μm emission wavelength and Ge-APD with a 300-μm diam are used as light source and detector, respectively.

Fig. 3
Fig. 3

Comparison of cutoff wavelength determined by our method (□) with those obtained by the near-field technique. Curves show the light wavelength where the near-field patterns change abruptly. The extrapolated wavelength to zero fiber length is considered to be the cutoff wavelength, as described in Ref. 5. The index-matching liquid is used to strip off the unguided modes. The fiber number in this figure is the same as that in Table II.

Tables (3)

Tables Icon

Table I Estimation of Errors in Fiber Parameters by the Change of the Average Loss over L1) and L2) a

Tables Icon

Table II Comparison of Fiber Parameters Determined by our Method with Those Obtained by Other Methods a

Tables Icon

Table III Nondestructive Measurement of Fiber Parameters a

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L ( λ ) = - 10 log { 4 / [ 4 + ( λ D / π W 2 ) 2 ] } ,
W = a ( 0.65 + 1.619 / V 1.5 + 2.879 / V 6 ) ,
V = 2 π a N . A . / λ ,
λ c = 2 π a N . A . / 2.405.
L ( λ ) = - 10 log { 4 ( w · W ) 2 / [ ( w 2 + W 2 ) 2 + ( λ D / π ) 2 ] } ,

Metrics