Abstract

A simple inexpensive modulator based on a combination of the photorefractive and electrooptic effects in Ti:in-diffused LiNbO3 waveguides is demonstrated.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Schmidt, IEEE Trans. Sonics Ultrason. SU-23, 22 (1976).
    [CrossRef]
  2. C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
    [CrossRef]
  3. E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
    [CrossRef]
  4. F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
    [CrossRef]
  5. V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
    [CrossRef]
  6. C. S. Tsai, P. Saunier, Appl. Phys. Lett. 27, 248 (1975).
    [CrossRef]
  7. K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
    [CrossRef]
  8. H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
    [CrossRef]
  9. R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
    [CrossRef]
  10. D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
    [CrossRef]
  11. N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
    [CrossRef]

1980

K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
[CrossRef]

1979

H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
[CrossRef]

1978

N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
[CrossRef]

1976

R. V. Schmidt, IEEE Trans. Sonics Ultrason. SU-23, 22 (1976).
[CrossRef]

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
[CrossRef]

1975

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

C. S. Tsai, P. Saunier, Appl. Phys. Lett. 27, 248 (1975).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

1974

R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
[CrossRef]

1968

F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Alhaider, M. A.

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

Chen, F. S.

F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Frazer, D. B.

F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Hartman, N. F.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

Kawabe, M.

H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
[CrossRef]

Kenan, R. P.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
[CrossRef]

Kim, B.

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

Kotani, H.

H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
[CrossRef]

La Macchia, J. T.

F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

Lean, E. G. H.

E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
[CrossRef]

Marcuse, D.

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

Namba, S.

H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
[CrossRef]

Nguyen, Le T.

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

Normandin, R.

N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
[CrossRef]

Rowell, N. L.

N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
[CrossRef]

Saunier, P.

C. S. Tsai, P. Saunier, Appl. Phys. Lett. 27, 248 (1975).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt, IEEE Trans. Sonics Ultrason. SU-23, 22 (1976).
[CrossRef]

Shibayama, K.

K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
[CrossRef]

Stegeman, G. I.

N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
[CrossRef]

Tsai, C. S.

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

C. S. Tsai, P. Saunier, Appl. Phys. Lett. 27, 248 (1975).
[CrossRef]

Verber, C. M.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
[CrossRef]

Wakazono, K.

K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
[CrossRef]

White, J. M.

E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
[CrossRef]

Wilkinson, C. D. W.

E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
[CrossRef]

Wood, V. E.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

Wood, Van E.

R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
[CrossRef]

Yamanouchi, K.

K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
[CrossRef]

Appl. Phys. Lett.

F. S. Chen, J. T. La Macchia, D. B. Frazer, Appl. Phys. Lett. 13, 223 (1968).
[CrossRef]

C. S. Tsai, P. Saunier, Appl. Phys. Lett. 27, 248 (1975).
[CrossRef]

R. P. Kenan, C. M. Verber, Van E. Wood, Appl. Phys. Lett. 24, 428 (1974).
[CrossRef]

N. L. Rowell, R. Normandin, G. I. Stegeman, Appl. Phys. Lett. 33, 845 (1978).
[CrossRef]

IEEE J. Quantum Electron.

H. Kotani, S. Namba, M. Kawabe, IEEE J. Quantum Electron. QE-15, 270 (1979).
[CrossRef]

D. Marcuse, IEEE J. Quantum Electron. QE-11, 759 (1975).
[CrossRef]

IEEE J. Quantum. Electron.

K. Yamanouchi, K. Wakazono, K. Shibayama, IEEE J. Quantum. Electron. QE-16, 628 (1980).
[CrossRef]

IEEE Trans. Sonics Ultrason.

R. V. Schmidt, IEEE Trans. Sonics Ultrason. SU-23, 22 (1976).
[CrossRef]

J. Appl. Phys.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, J. Appl. Phys. 46, 1214 (1975); C. M. Verber, N. F. Hartman, A. M. Glass, Appl. Phys. Lett. 30, 272 (1977).
[CrossRef]

Proc. IEEE

C. S. Tsai, M. A. Alhaider, Le T. Nguyen, B. Kim, Proc. IEEE 64, 318 (1976).
[CrossRef]

E. G. H. Lean, J. M. White, C. D. W. Wilkinson, Proc. IEEE 64, 779 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Geometry used for writing a holographic grating into a Ti:in-diffused LiNbO3 waveguide with 0.5145-μm light; (b) beam splitting of a guided wave (λ = 0.6328 λm) by a holographic grating; (c) modulation of a guided beam by the application of an electric field across a holographic grating (1.59-mm gap electrodes).

Fig. 2
Fig. 2

Modulation signals obtained with a sinusoidal electrode voltage for different directions of the incident guided wave relative to the grating Bragg angle.

Fig. 3
Fig. 3

Intensity of the diffracted guided wave obtained when a triangular voltage waveform was applied to the electrodes (0.3-mm gap spacing). Vertical scale for waveform: 50 V/div. Horizontal scale: 5 msec/div. Vertical scale for modulation signal: arbitrary units: (a) full modulator response function; (b) linear response region; and (c) sidebands of the response function.

Fig. 4
Fig. 4

Modulator efficiency (100% ≡ complete extinction) vs applied voltage across the 1.59-mm electrode gap. Solid line corresponds to theory [Eq. (4)].

Fig. 5
Fig. 5

Beam quality when the guided wave was propagated near the electrode edge (narrow gap): (a) No applied voltage. The spot corresponds to the undiffracted beam. (b) 300 V applied in a direction away from the Bragg condition. The spot corresponds to the undiffracted beam. (c) 300 V applied to produce a diffracted beam near the condition for maximum diffraction. Upper and lower beams correspond to the undiffracted and diffracted beams.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

n = n 0 + Δ n sin ( β g · r ) ,
Δ N = ½ n 0 3 ( θ ) r 33 2 V π d ,
n = n 0 + Δ n sin ( β g · r ) + Δ N .
I d I i = κ e 2 κ e 2 + δ 2 sin 2 ( L g κ e 2 + δ 2 ) .
δ = δ Δ N λ + π λ Δ θ .
κ e = κ cos ( 2 θ B ) ,
Δ V = ( 1 + κ e 2 L 2 2 π 2 m ( m + 1 ) ) π λ d n 0 3 r 33 L g .

Metrics