Abstract

Nonmechanical methods for effecting deflection and translation of laser beams without frequency shifting are described. For beam deflection two Bragg cells having different acoustic velocities are used. For pure beam translation, a single Bragg cell through which the beam travels twice may be used. Detailed acoustooptical analyses for these devices are included as well as discussion of an application for an optical heterodyne radio-frequency tunable receiver.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. G. Cohen, E. I. Gordon, Bell Syst. Tech. J. 44, 693 (1965).
  2. A. Korpel et al., Proc. IEEE 54, 1429 (1966).
    [CrossRef]
  3. L. D. Dickson, Appl. Opt. 11, 2196 (1972).
    [CrossRef] [PubMed]
  4. M. G. Cohen et al., “Resonant Acoustooptic Q-Switching of High-Gain Lasers,” at Conference on Laser Engineering and Applications, Washington, D.C., 1971.
  5. N. J. Berg, J. N. Lee, M. W. Casseday, B. J. Udelson, Appl. Opt. 18, 2767 (1979).
    [CrossRef] [PubMed]
  6. P. Kellman, Opt. Eng. 19, 370 (1980).
    [CrossRef]
  7. J. N. Lee et al., “High-Speed Adaptive Filtering and Reconstruction of Broad-Band Signals Using Acousto-Optic Techniques,” in IEEE Ultrasonics Symposium, Vol. 1 (IEEE, New York, 1980), pp. 488–491.
  8. W. T. Rhodes, Proc. IEEE 69, 65 (1981).
    [CrossRef]
  9. T. M. Turpin, Proc. IEEE 69, 79 (1981).
    [CrossRef]
  10. N. J. Berg et al., “Real-Time Radar and Sonar Signal Processing Using Acousto-Optics,” in Proceedings, 1978 International Optical Computing Conference (publisher, location, 19xx), pp. 43–48.
  11. J. B. Abbiss, W. T. Mayo, Appl. Opt. 20, 588 (1981).
    [CrossRef] [PubMed]
  12. W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 723 (1967).
  13. R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).
    [CrossRef]
  14. N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
    [CrossRef]
  15. A. Korpel, “Acousto-Optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, Ed. (Academic, New York, 1972), Chap. 2, pp. 73–179.
  16. R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
    [CrossRef]
  17. E. H. Young, S. Yao, Proc. IEEE 69, 54 (1981).
    [CrossRef]
  18. A. Yariv, in Introduction to Optical Electronics (Holt, Rinehart and Winston, New York), pp. 308–310.
  19. R. Whitman et al., “Application of Acoustic Bragg Diffraction to Optical Processing Techniques,” in Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 243–256.

1981

W. T. Rhodes, Proc. IEEE 69, 65 (1981).
[CrossRef]

T. M. Turpin, Proc. IEEE 69, 79 (1981).
[CrossRef]

E. H. Young, S. Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

J. B. Abbiss, W. T. Mayo, Appl. Opt. 20, 588 (1981).
[CrossRef] [PubMed]

1980

P. Kellman, Opt. Eng. 19, 370 (1980).
[CrossRef]

1979

1973

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

1972

1967

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 723 (1967).

R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

1966

A. Korpel et al., Proc. IEEE 54, 1429 (1966).
[CrossRef]

1965

M. G. Cohen, E. I. Gordon, Bell Syst. Tech. J. 44, 693 (1965).

Abbiss, J. B.

Berg, N. J.

N. J. Berg, J. N. Lee, M. W. Casseday, B. J. Udelson, Appl. Opt. 18, 2767 (1979).
[CrossRef] [PubMed]

N. J. Berg et al., “Real-Time Radar and Sonar Signal Processing Using Acousto-Optics,” in Proceedings, 1978 International Optical Computing Conference (publisher, location, 19xx), pp. 43–48.

Casseday, M. W.

Cohen, M. G.

M. G. Cohen, E. I. Gordon, Bell Syst. Tech. J. 44, 693 (1965).

M. G. Cohen et al., “Resonant Acoustooptic Q-Switching of High-Gain Lasers,” at Conference on Laser Engineering and Applications, Washington, D.C., 1971.

Cook, B. D.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 723 (1967).

Dickson, L. D.

Dixon, R. W.

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

Gordon, E. I.

M. G. Cohen, E. I. Gordon, Bell Syst. Tech. J. 44, 693 (1965).

Kellman, P.

P. Kellman, Opt. Eng. 19, 370 (1980).
[CrossRef]

Klein, W. R.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 723 (1967).

Korpel, A.

A. Korpel et al., Proc. IEEE 54, 1429 (1966).
[CrossRef]

A. Korpel, “Acousto-Optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, Ed. (Academic, New York, 1972), Chap. 2, pp. 73–179.

Lee, J. N.

N. J. Berg, J. N. Lee, M. W. Casseday, B. J. Udelson, Appl. Opt. 18, 2767 (1979).
[CrossRef] [PubMed]

J. N. Lee et al., “High-Speed Adaptive Filtering and Reconstruction of Broad-Band Signals Using Acousto-Optic Techniques,” in IEEE Ultrasonics Symposium, Vol. 1 (IEEE, New York, 1980), pp. 488–491.

Mayo, W. T.

Niizeki, N.

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Rhodes, W. T.

W. T. Rhodes, Proc. IEEE 69, 65 (1981).
[CrossRef]

Turpin, T. M.

T. M. Turpin, Proc. IEEE 69, 79 (1981).
[CrossRef]

Uchida, N.

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

Udelson, B. J.

Whitman, R.

R. Whitman et al., “Application of Acoustic Bragg Diffraction to Optical Processing Techniques,” in Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 243–256.

Yao, S.

E. H. Young, S. Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

Yariv, A.

A. Yariv, in Introduction to Optical Electronics (Holt, Rinehart and Winston, New York), pp. 308–310.

Young, E. H.

E. H. Young, S. Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

M. G. Cohen, E. I. Gordon, Bell Syst. Tech. J. 44, 693 (1965).

IEEE J. Quantum Electron.

R. W. Dixon, IEEE J. Quantum Electron. QE-3, 85 (1967).
[CrossRef]

IEEE Trans. Sonics Ultrason.

W. R. Klein, B. D. Cook, IEEE Trans. Sonics Ultrason. SU-14, 723 (1967).

J. Appl. Phys.

R. W. Dixon, J. Appl. Phys. 38, 5149 (1967).
[CrossRef]

Opt. Eng.

P. Kellman, Opt. Eng. 19, 370 (1980).
[CrossRef]

Proc. IEEE

A. Korpel et al., Proc. IEEE 54, 1429 (1966).
[CrossRef]

N. Uchida, N. Niizeki, Proc. IEEE 61, 1073 (1973).
[CrossRef]

E. H. Young, S. Yao, Proc. IEEE 69, 54 (1981).
[CrossRef]

W. T. Rhodes, Proc. IEEE 69, 65 (1981).
[CrossRef]

T. M. Turpin, Proc. IEEE 69, 79 (1981).
[CrossRef]

Other

N. J. Berg et al., “Real-Time Radar and Sonar Signal Processing Using Acousto-Optics,” in Proceedings, 1978 International Optical Computing Conference (publisher, location, 19xx), pp. 43–48.

A. Yariv, in Introduction to Optical Electronics (Holt, Rinehart and Winston, New York), pp. 308–310.

R. Whitman et al., “Application of Acoustic Bragg Diffraction to Optical Processing Techniques,” in Symposium on Modern Optics, J. Fox, Ed. (Polytechnic Press, Brooklyn, 1967), pp. 243–256.

A. Korpel, “Acousto-Optics,” in Applied Solid State Science, Vol. 3, R. Wolfe, Ed. (Academic, New York, 1972), Chap. 2, pp. 73–179.

M. G. Cohen et al., “Resonant Acoustooptic Q-Switching of High-Gain Lasers,” at Conference on Laser Engineering and Applications, Washington, D.C., 1971.

J. N. Lee et al., “High-Speed Adaptive Filtering and Reconstruction of Broad-Band Signals Using Acousto-Optic Techniques,” in IEEE Ultrasonics Symposium, Vol. 1 (IEEE, New York, 1980), pp. 488–491.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Bragg cell beam deflector.

Fig. 2
Fig. 2

Bragg deflector fractional intensity variation vs fractional frequency variation. Incidence angle equals Bragg angle at f = f0.

Fig. 3
Fig. 3

Zero frequency shift beam deflection.

Fig. 4
Fig. 4

Zero frequency shift beam translation.

Fig. 5
Fig. 5

Bragg cell zero frequency shift translation vs rf variation Δf.

Fig. 6
Fig. 6

Comparison of translation test data and Eq. (18).

Fig. 7
Fig. 7

Translated beam fractional intensity vs Δf theoretical curve [Eq. (9) squared] and test data.

Fig. 8
Fig. 8

Zero frequency shift beam translation analysis.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

sin θ B = λ f 2 Λ = λ f f 2 V a ,
I 1 / I 0 = ( ξ 2 σ ) 2 sin 2 σ ,
ξ = - 2 π λ f M 2 P a L 2 H ,
σ 2 = ζ 2 + ( ξ / 2 ) 2 ,
ζ = π L n Λ ( sin θ i - sin θ B ) .
Q = 2 π L λ f n Λ 2 = 2 π L λ f f 2 n V a 2 .
ζ π L λ f f Δ f 2 V a 2 n
ζ = ( Q Δ f ) / ( 4 f ) .
I 1 / I 0 = ( π λ f ) 2 M 2 P a L 2 H ( Q Δ f 4 f ) 2 + ( π λ f ) 2 M 2 P a L 2 H sin 2 ( Q Δ f 4 f ) 2 + ( π λ f ) 2 M 2 P a L 2 H .
Δ θ 1 = λ f V a 1 Δ f .
Δ θ 2 = - Δ θ 1 + λ f V a 2 Δ f
Δ θ 2 = ( 1 V a 2 - 1 V a 1 ) λ f Δ f .
ζ 2 = π L 2 n 2 Λ 2 ( sin θ i 2 - sin θ B 2 ) .
θ i 2 = θ i 2 c + Δ θ 1 ,
ζ 2 = π L 2 n 2 V a 2 ( 1 V a 1 - 1 2 V a 2 ) λ f f Δ f ,
ζ 2 = Q 2 ( V a 2 V a 1 - ½ ) Δ f 2 f .
I 2 / I 0 = ( π λ f ) 2 M 21 P a 1 L 1 2 H 1 ( Q 1 Δ f 4 f ) 2 + ( π λ f ) 2 M 21 P a 1 L 1 2 H 1 × sin 2 ( Q 1 Δ f 4 f ) 2 + ( π λ f ) 2 M 21 P a 1 L 1 2 H 1 × ( π λ f ) 2 M 22 P a 2 L 2 2 H 2 [ Q 2 ( V a 2 V a 1 - ½ ) Δ f 2 f ] 2 + ( π λ f ) 2 M 22 P a 2 L 2 2 H 2 × sin 2 [ Q 2 ( V a 2 V a 1 - ½ ) Δ f 2 f ] 2 + ( π λ f ) 2 M 22 P a 2 L 2 2 H 2 .
l [ 2 D + L ( n - 1 ) ] λ V a Δ f ,
l = d cos θ B ,
d = 2 h f + Δ f - 2 h f ,
h f = L 2 tan θ B + ( D - L 2 ) tan θ B ,
h f + Δ f = L 2 tan ( θ B + Δ θ ) + ( D - L 2 ) tan ( θ B + Δ θ ) .
l = { L [ tan ( θ B + Δ θ ) - tan θ B ] + ( 2 D - L ) [ tan ( θ B + Δ θ ) - tan θ B ] } cos θ B .
l = l cos θ B cos θ B .
tan θ θ ,
cos θ 1 ,
Δ θ d = λ V a Δ f .
l = [ 2 D + L ( n - 1 ) ] λ V a Δ f ,

Metrics