Abstract

A CO2 heterodyne lidar system and high speed digitizer were used to examine properties of returns from disk and belt-type calibration targets and atmospheric aerosols. Amplitude statistics of the returns from the targets examined corresponded to those of the Rayleigh phasor predicted by theory. Returns from a belt sander fluctuated at a much slower rate than those from the disks or aerosols, requiring longer averaging times for accurate power measurement. At very close focal lengths returns from single large particles often dominated the backscattered aerosol signal.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kronstein, R. J. Kraushaar, R. E. Deacle, J. Opt. Soc. Am. 53, 458 (1963).
    [CrossRef]
  2. M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
    [CrossRef] [PubMed]
  3. M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).
  4. P. Beckman, Probability in Communication Engineering (Harcourt, Brace & World, New York, 1967).
  5. S. F. Clifford, T. Wang, T. R. Lawrence, “Refractive Turbulence Effects on Lidar Systems,” NOAA Tech. Memo. ERL WPL-48 (1980).
  6. T. R. Lawrence, Rev. Sci. Instrum. 43, 512 (1972).
    [CrossRef]
  7. S. F. Clifford, S. Wandzura, Appl. Opt. 20, 514 (1981).
    [CrossRef] [PubMed]
  8. R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).

1981 (1)

1980 (1)

1972 (1)

T. R. Lawrence, Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

1963 (1)

Beckman, P.

P. Beckman, Probability in Communication Engineering (Harcourt, Brace & World, New York, 1967).

Born, M.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Clifford, S. F.

S. F. Clifford, S. Wandzura, Appl. Opt. 20, 514 (1981).
[CrossRef] [PubMed]

S. F. Clifford, T. Wang, T. R. Lawrence, “Refractive Turbulence Effects on Lidar Systems,” NOAA Tech. Memo. ERL WPL-48 (1980).

Deacle, R. E.

Hall, F. F.

Hardesty, R. M.

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).

Keeler, R. J.

Kraushaar, R. J.

Kronstein, M.

Lawrence, T. R.

M. J. Post, R. A. Richter, R. J. Keeler, R. M. Hardesty, T. R. Lawrence, F. F. Hall, Appl. Opt. 19, 2828 (1980).
[CrossRef] [PubMed]

T. R. Lawrence, Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

S. F. Clifford, T. Wang, T. R. Lawrence, “Refractive Turbulence Effects on Lidar Systems,” NOAA Tech. Memo. ERL WPL-48 (1980).

Post, M. J.

Richter, R. A.

Wandzura, S.

Wang, T.

S. F. Clifford, T. Wang, T. R. Lawrence, “Refractive Turbulence Effects on Lidar Systems,” NOAA Tech. Memo. ERL WPL-48 (1980).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

Appl. Opt. (2)

J. Opt. Soc. Am. (1)

Rev. Sci. Instrum. (1)

T. R. Lawrence, Rev. Sci. Instrum. 43, 512 (1972).
[CrossRef]

Other (4)

R. M. Hardesty, “A Comparison of Heterodyne and Direct Detection CO2 DIAL Systems for Ground Based Humidity Profiling,” NOAA Tech. Memo. ERL WPL-64 (1980).

M. Born, E. Wolf, Principles of Optics (Macmillan, New York, 1964).

P. Beckman, Probability in Communication Engineering (Harcourt, Brace & World, New York, 1967).

S. F. Clifford, T. Wang, T. R. Lawrence, “Refractive Turbulence Effects on Lidar Systems,” NOAA Tech. Memo. ERL WPL-48 (1980).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic of homodyne coherent lidar system and data collection hardware.

Fig. 2
Fig. 2

Histograms of detector output levels for signals scattered from sulfur disk, sandpaper disk, sandpaper belt, and atmospheric aerosols.

Fig. 3
Fig. 3

Histogram of signal amplitude (A) and log of signal power (logP) for signals scattered from sulfur disk, sandpaper disk, sandpaper belt, and atmospheric aerosols. X is a dummy variable indicating relative strength of the amplitude or log power signal. Roll-off at high values of log power resulted from limited range of the digitizer.

Fig. 4
Fig. 4

Time series of power in returns from sandpaper disk, belt sander, and atmospheric aerosols.

Fig. 5
Fig. 5

Normalized autocovariance function of power fluctuations calculated using returns from disk sander and from belt sander at two ranges.

Fig. 6
Fig. 6

Normalized autocovariance function of power fluctuations calculated from aerosol returns at three focal lengths.

Fig. 7
Fig. 7

Comparison of spectra of returns from aerosols at different ranges and from belt sander at 100-m range.

Fig. 8
Fig. 8

Time series of received power averaged over 1024 samples for aerosols at 30-m range showing large scatterer moving through the beam. Lower trace is an enlargement of one segment of the upper trace showing the power for each sample during the segment.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

l ( 2.44 λ R ) / d ,
τ b d / ( v cos θ ) ,
τ d 1 d / ( ω r ) ,
τ d 2 λ / ( 2 ω d ) .
τ a λ / σ v ,
l r ( 2 λ R 2 ) / ( π D 2 ) ,

Metrics