Abstract

The influence of background contamination on the apparent reflectance of a target as viewed from space has been studied as a function of the characteristics of atmospheric aerosols and the simple geometry of the target. For relatively common aerosol characteristics, the main features of the environment effect may be accounted for by simple correction terms, which depend only upon the optical thicknesses of aerosols and the molecular scattering of the atmosphere.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. S. Fraser, in Interaction Mechanisms within the Atmosphere, Manual of Remote Sensing, R. G. Reaves, Ed. (American Association of Photogrammetry, Falls Church, Va.), p. 181.
  2. T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
    [Crossref]
  3. G. W. Kattawar, G. N. Plass, Appl. Opt. 7, 1519 (1968).
    [Crossref] [PubMed]
  4. R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1972), p. 895.
  5. H. R. Gordon, Appl. Opt. 17, 1631 (1978).
    [Crossref] [PubMed]
  6. M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
    [Crossref]
  7. A. P. Odell, J. A. Weinman, J. Geophys. Res. 80, 5035 (1975).
    [Crossref]
  8. S. Q. Duntley, A. R. Boileau, R. W. Preisendorfer, J. Opt. Soc. Am. 47, 499 (1957).
    [Crossref]
  9. D. Tanre, M. Herman, P. Y. Deschamps, A. De Leffe, Appl. Opt. 18, 3587 (1979).
    [Crossref] [PubMed]
  10. W. A. Pearce, “A Study of the Effects of the Atmosphere on Thematic Mapper Observations,” NASA contract NAS 5-23639, Report 004-77, prepared for NASA Goddard Space Flight Center, Greenbelt, Md. (1977).
  11. Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.
  12. S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.
  13. J. Otterman, R. S. Fraser, Appl. Opt. 18, 2852 (1979).
    [Crossref] [PubMed]
  14. McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).
  15. S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).
  16. K. L. Coulson, E. L. Gray, G. M. Bouricius, “A Study of the Reflection and Polarization Characteristics of Selected Natural and Artificial Surfaces,” Technical Information Series, Report R 655 D4, Space Sciences Laboratory, General Electric Co. (1965).

1980 (1)

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
[Crossref]

1979 (2)

1978 (1)

1976 (1)

T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
[Crossref]

1975 (1)

A. P. Odell, J. A. Weinman, J. Geophys. Res. 80, 5035 (1975).
[Crossref]

1968 (1)

1957 (1)

Boileau, A. R.

Bouricius, G. M.

K. L. Coulson, E. L. Gray, G. M. Bouricius, “A Study of the Reflection and Polarization Characteristics of Selected Natural and Artificial Surfaces,” Technical Information Series, Report R 655 D4, Space Sciences Laboratory, General Electric Co. (1965).

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

Coulson, K. L.

K. L. Coulson, E. L. Gray, G. M. Bouricius, “A Study of the Reflection and Polarization Characteristics of Selected Natural and Artificial Surfaces,” Technical Information Series, Report R 655 D4, Space Sciences Laboratory, General Electric Co. (1965).

De Leffe, A.

Deschamps, P. Y.

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
[Crossref]

D. Tanre, M. Herman, P. Y. Deschamps, A. De Leffe, Appl. Opt. 18, 3587 (1979).
[Crossref] [PubMed]

Duntley, S. Q.

Fenn, R. A.

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

Fraser, R. S.

J. Otterman, R. S. Fraser, Appl. Opt. 18, 2852 (1979).
[Crossref] [PubMed]

R. S. Fraser, in Interaction Mechanisms within the Atmosphere, Manual of Remote Sensing, R. G. Reaves, Ed. (American Association of Photogrammetry, Falls Church, Va.), p. 181.

Garing, J. S.

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

Gordon, H. R.

Gray, E. L.

K. L. Coulson, E. L. Gray, G. M. Bouricius, “A Study of the Reflection and Polarization Characteristics of Selected Natural and Artificial Surfaces,” Technical Information Series, Report R 655 D4, Space Sciences Laboratory, General Electric Co. (1965).

Haba, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Herman, M.

Kattawar, G. W.

Kawata, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Kusaka, T.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

McClatchey,

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

Morrissey, E. G.

T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
[Crossref]

Odell, A. P.

A. P. Odell, J. A. Weinman, J. Geophys. Res. 80, 5035 (1975).
[Crossref]

Otterman, J.

Pearce, W. A.

W. A. Pearce, “A Study of the Effects of the Atmosphere on Thematic Mapper Observations,” NASA contract NAS 5-23639, Report 004-77, prepared for NASA Goddard Space Flight Center, Greenbelt, Md. (1977).

Plass, G. N.

Preisendorfer, R. W.

Selby, J. E. A.

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

Spencer, M. M.

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1972), p. 895.

Taggart, C. I.

T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
[Crossref]

Takashima, T.

T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
[Crossref]

Tanre, D.

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
[Crossref]

D. Tanre, M. Herman, P. Y. Deschamps, A. De Leffe, Appl. Opt. 18, 3587 (1979).
[Crossref] [PubMed]

Terashita, Y.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Turner, R. E.

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1972), p. 895.

Ueno, S.

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Viollier, M.

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
[Crossref]

Volz, F. E.

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

Weinman, J. A.

A. P. Odell, J. A. Weinman, J. Geophys. Res. 80, 5035 (1975).
[Crossref]

Appl. Opt. (4)

Astrophys. Space Sci. (1)

T. Takashima, C. I. Taggart, E. G. Morrissey, Astrophys. Space Sci. 40, 157 (1976).
[Crossref]

Boundary-Layer Meteorol. (1)

M. Viollier, D. Tanre, P. Y. Deschamps, Boundary-Layer Meteorol. 18, 247 (1980).
[Crossref]

J. Geophys. Res. (1)

A. P. Odell, J. A. Weinman, J. Geophys. Res. 80, 5035 (1975).
[Crossref]

J. Opt. Soc. Am. (1)

Other (8)

R. S. Fraser, in Interaction Mechanisms within the Atmosphere, Manual of Remote Sensing, R. G. Reaves, Ed. (American Association of Photogrammetry, Falls Church, Va.), p. 181.

R. E. Turner, M. M. Spencer, “Atmospheric Model for Correction of Spacecraft Data,” in Proceedings, Eighth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1972), p. 895.

McClatchey, R. A. Fenn, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL 71-0279, Environmental Research Papers 354 (1971).

S. Chandrasekhar, Radiative Transfer (Clarendon, Oxford, 1950).

K. L. Coulson, E. L. Gray, G. M. Bouricius, “A Study of the Reflection and Polarization Characteristics of Selected Natural and Artificial Surfaces,” Technical Information Series, Report R 655 D4, Space Sciences Laboratory, General Electric Co. (1965).

W. A. Pearce, “A Study of the Effects of the Atmosphere on Thematic Mapper Observations,” NASA contract NAS 5-23639, Report 004-77, prepared for NASA Goddard Space Flight Center, Greenbelt, Md. (1977).

Y. Kawata, Y. Haba, T. Kusaka, Y. Terashita, S. Ueno, “Atmospheric Effects and their Correction in Airborne Sensor and Landsat MSS Data,” in Proceedings, Twelfth International Symposium on Remote Sensing of Environment (ERIM, Ann Arbor, Mich., 1978), p. 1241.

S. Ueno, Y. Haba, Y. Kawata, T. Kusaka, Y. Terashita, The Atmospheric Blurring Effect on Remotely Sensed Earth Imagery, in Remote Sensing of the Atmosphere: Inversion Methods and Applications, A. L. Fymat, V. E. Zuev, Eds. (Elsevier, New York, 1978), p. 305.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Scattering phase function P(θ) of aerosol. For the size distribution and the refractive index (m = 1.50) of the model of McClatchey et al.,14 the results are shown for λ = 850 and 450 nm. For λ = 850 nm, P(θ) is also shown for the same size distribution but for an assumed refractive index m = 1.33.

Fig. 2
Fig. 2

Aerosol number density profiles for the two basic models MC23 and MC5 and for the modified models MC.P.23 and MC.P.5.

Fig. 3
Fig. 3

Relative integrated aerosol content 0 z N ( z ) d z / 0 N ( z ) d z as a function of altitude z for the four aerosol number-density profiles given in Fig. 2.

Fig. 4
Fig. 4

Comparison of the exact results for F(r) (solid lines) with the single-scattering approximation (dashed lines). The results al re for the MC23 model for λ = 850 nm (upper curves) and λ = 450 nm (lower curves).

Fig. 5
Fig. 5

Function F(r) for pure molecular scattering (model R) for four different aerosol number density profiles (models MC5, MC.P.5, MC23, and MC.P.23) and for the MC.1.5 model. Comparison of the MC5 with the MC.I.5 results shows the influence of the aerosol phase function. Results are for λ = 850 nm.

Fig. 6
Fig. 6

Same as Fig. 5 for λ = 450 nm. MC.I.5 results have been omitted.

Fig. 7
Fig. 7

Relative contribution C(z) from the various atmospheric layers to the environment weighting function rp(r) with r p ( r ) = 0 C ( z ) r d zfor three fixed values of distance r. Four aerosol number density profiles given in Fig. 2 are investigated. Results are for λ = 450 nm and correspond to single-scattering calculations.

Fig. 8
Fig. 8

Contrast function C(P) for the case of two adjacent half-planes as a function of the distance d from P to the boundary. Solar zenith angle is 60°. Two aerosol contents of the MC5 and MC23 models and two observation wavelengths, 850 and 450 nm, have been considered. For each case, C(P) was calculated with the environment functions corresponding to the MC.I.5 model (upper contrast) and to the MC.P.23 model (lower contrast). Results labeled HC correspond to the high aerosol content of the MC5 model. LC corresponds to the low aerosol content of the MC23 model.

Fig. 9
Fig. 9

Contrast function C(P), for the case of a square target, as a function of distance d from P to the center of the target. Solar zenith angle is 60°. Results are shown only for positive values of d. Three different target sizes are considered: 2a = 0.3,1, and 2 km. Aerosol contents, observation wavelengths, and extreme environment weighting functions are the same as for Fig. 8. Results in Fig. 9 are for the low aerosol content LC and for λ = 850 nm. Horizontal dashed lines correspond to approximate values for C(P) (see text). Horizontal solid lines with arrows show extreme values of C(d) with the center of a very small (lower) or very large (upper) target.

Fig. 10
Fig. 10

Same as Fig. 9 for high aerosol content HC and λ = 850 nm.

Fig. 11
Fig. 11

Same as Fig. 9 for low aerosol content LC and λ = 450 nm.

Fig. 12
Fig. 12

Same as Fig. 9 for high aerosol content HC and λ = 450 nm.

Fig. 13
Fig. 13

Accuracy of small and large target approximations. Δρ is the actual environment correction, δρ is the error on the retrieved Δρ due to the approximations. Ratios δρρ are given for, respectively, the small target approximation (full line) and large target approximation (dashed line).

Tables (3)

Tables Icon

Table I Optical Thickness for Molecules τR and Aerosols τP for the MC23 and MC5 Models

Tables Icon

Table II Values of ρa, A, and B for the MC23 and MC5 Models,a

Tables Icon

Table III Relative Contributions of Primary and Secondary Scattering Orders, to the Function E(μ), for Two Viewing Zenith Angles and Two Observation Wavelengths a

Equations (33)

Equations on this page are rendered with MathJax. Learn more.

0 z N ( z ) d z / 0 N ( z ) d z .
ρ * = π I / ( μ 0 f ) ,
ρ * ( μ 0 , μ , ϕ ) = ρ a ( μ 0 , μ , ϕ ) + 1 1 - ρ s [ ρ · A ( τ , μ 0 , μ ) + ρ · B ( τ , μ 0 , μ ) ] ,
A ( τ , μ 0 , μ ) = T ( τ , μ 0 ) exp ( - τ / μ ) , B ( τ , μ 0 , μ ) = T ( τ , μ 0 ) E ( τ , μ ) , T ( τ , μ 0 ) = E ( τ , μ 0 ) + exp ( - τ / μ 0 ) ,
E ( τ , μ ) exp ( - τ R + τ P μ ) [ exp ( + α R τ R + α P τ P μ ) - 1 ]
α R = 1 + cos θ R 2 ;             α P = 1 + cos θ P 2 ,
ρ * ( M , μ 0 , μ , ϕ ) = ρ a ( μ 0 , μ , ϕ ) + 1 1 - ρ ( M ) s × [ ρ ( M ) · A ( τ , μ 0 , μ ) + ρ ( M ) · B ( τ , μ 0 , μ ) ] ,
ρ ( M ) = 1 E ( μ ) ρ ( x , y ) e ( x , y , μ ) d x d y ,
ρ ( M ) = 0 2 π 0 ρ ( r , ψ ) r p ( r ) d r d ψ
r p ( r ) = r e ( r , ψ , + 1 ) E ( + 1 ) ,
2 π r p ( r ) ¯ Δ r = N ( r ) Δ r N 0
r p ( r ) = 1 2 π 0 k ( z ) P ( θ , z ) t ( z , r ) r z ( r 2 + z 2 ) - 3 / 2 d z 0 d r 0 k ( z ) P ( θ , z ) t ( z , r ) r z ( r 2 + z 2 ) - 3 / 2 d z ,
t ( z , r ) = exp [ - τ ( z ) ] exp ( - { [ τ ( z ) - τ ] · ( r 2 + z 2 ) 1 / 2 · z - 1 } ) .
F ( r ) = 0 r 2 π r p ( r ) d r ,
N * ( z ) = N ( z ) / 0 N ( z ) d z .
E ( τ , μ ) exp ( - τ R + τ P μ ) ( α R τ R + α P τ P ) ,
F ( r ) = α P τ P · F P ( r ) + α R τ R F R ( r ) α P τ P + α R τ R ,
F ( r ) ~ 0 z ( r ) N * ( z ) d z .
ρ ( P ) * = S 1 r p ( r ) d r d ψ ,
ρ ( P ) = ρ 0 + ( ρ 1 - ρ 0 ) ρ ( P ) * .
ρ * ( P ) = ρ a + A ρ ( P ) + B ρ 0 + B ( ρ 1 - ρ 0 ) ρ ( P ) * .
ρ * ( P 1 ) - ρ * ( P 2 ) ρ 1 - ρ 0 = C ( P 1 ) - C ( P 2 ) ,
C ( P ) = ( P ) A + B ρ ( P ) * ,
ρ ( P ) = ρ 1 F ( r ¯ ) + ρ 0 [ 1 - F ( r ¯ ) ]
ρ ( P ) * = F ( r ¯ ) .
F P ( r ) 1 - [ 0.375 exp ( - 0.2 r ) + 0.625 exp ( - 1.83 r ) ] F R ( r ) 1 - [ 0.930 exp ( - 0.08 r ) + 0.070 exp ( - 1.10 r ) ] ( r in km ) .
ρ * = ρ a + ρ 1 [ A + B F ( r ¯ ) ] + ρ 0 B [ 1 - F ( r ¯ ) ] .
ρ * = ρ a + ρ 1 s A + ρ 0 B
ρ * = ρ a + ρ 1 l ( A + B ) .
δ ρ 1 s Δ ρ = ρ 1 s - ρ 1 ρ 1 - ρ 0 = B F ( r ¯ ) A
δ ρ 1 l Δ ρ = ρ 1 l - ρ 1 ρ 1 - ρ 0 = B [ 1 - F ( r ¯ ) ] A + B .
0 z N ( z ) d z / 0 N ( z ) d z
r p ( r ) = 0 C ( z ) r d z

Metrics