Abstract

Progress in the development of Nd: glass active mirror laser amplifiers is presented. Included is a detailed discussion of hardware design as well as gain and repetition rate performance. Finally, multiunit test results, in a higher power and high energy beam, are presented.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Chernoch, U.S. Patent3,525,053 (28Aug.1970).
  2. W. S. Martin, General Electric Technical Report 68-C-285 (August1968).
  3. G. Bret, M. C. Hurand, J. C. Boltz, at Conference on Laser Engineering and Applications, 28–30 May 1975, paper 4.2.
  4. J. Hoose, J. Soures, in Ref. 3, paper 4.1.
  5. S. Thomas, KMS Fusion; private communication.
  6. Lawrence Livermore LaboratoryLaser Program Semi Annual Report, UCRL-50021-73-2 (July–December1973), p. 14.
  7. Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL-50021-76 (1976), p. 2–80.
  8. Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL 50021-75 (1975), p. 224.
  9. D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
    [CrossRef] [PubMed]
  10. J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).
  11. M. J. Minot, J. Opt. Soc. Am. 66, 515 (1976).
    [CrossRef]
  12. K. E. Schwenker, J. Opt. Soc. Am. 69, 1418A (1979).
  13. R. Sampath, Laboratory for Laser Energetics, Omega Tech Note 77, 28Aug.1978; W. S. Martin, General Electric Co.; private communication;M. Sparks, J. Appl. Phys. 42, 5029 (1971); J. R. Jasperse, J. D. Gianio, J. Appl. Phys. 43, 1686 (1972); B. Bendow, P. D. Gianio, Appl. Phys. 2, 1 (1973).
    [CrossRef]
  14. J. H. Kelly, D. Brown, J. Opt. Soc. Am. 69, 1446A (1979).
  15. S. D. Jacobs, in Proceedings Technical Program, Electro-Optics/Laser 78, Boston (19–21 Sep. 1978), p. 24.
  16. D. Harter, U. of Rochester, Institute of Optics; private communication.
  17. D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.
  18. Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL 50021-76 (1976), p. 2.19.
  19. J. B. Trenholme, NRL Memorandum Report 2480.
  20. Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL-50021-75 (1975), p. 148.
  21. S. Warshaw, Laboratory for Laser Energetics Internal Report 52 (Jan.1977).

1979 (2)

K. E. Schwenker, J. Opt. Soc. Am. 69, 1418A (1979).

J. H. Kelly, D. Brown, J. Opt. Soc. Am. 69, 1446A (1979).

1978 (2)

R. Sampath, Laboratory for Laser Energetics, Omega Tech Note 77, 28Aug.1978; W. S. Martin, General Electric Co.; private communication;M. Sparks, J. Appl. Phys. 42, 5029 (1971); J. R. Jasperse, J. D. Gianio, J. Appl. Phys. 43, 1686 (1972); B. Bendow, P. D. Gianio, Appl. Phys. 2, 1 (1973).
[CrossRef]

D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
[CrossRef] [PubMed]

1976 (1)

Abate, J. A.

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Appelbaum, H.

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

Boltz, J. C.

G. Bret, M. C. Hurand, J. C. Boltz, at Conference on Laser Engineering and Applications, 28–30 May 1975, paper 4.2.

Bret, G.

G. Bret, M. C. Hurand, J. C. Boltz, at Conference on Laser Engineering and Applications, 28–30 May 1975, paper 4.2.

Brown, D.

J. H. Kelly, D. Brown, J. Opt. Soc. Am. 69, 1446A (1979).

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

Brown, D. C.

D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
[CrossRef] [PubMed]

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Chernoch, J. P.

J. P. Chernoch, U.S. Patent3,525,053 (28Aug.1970).

Harter, D.

D. Harter, U. of Rochester, Institute of Optics; private communication.

Hoose, J.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

J. Hoose, J. Soures, in Ref. 3, paper 4.1.

Hurand, M. C.

G. Bret, M. C. Hurand, J. C. Boltz, at Conference on Laser Engineering and Applications, 28–30 May 1975, paper 4.2.

Jacobs, S.

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

Jacobs, S. D.

D. C. Brown, S. D. Jacobs, N. Nee, Appl. Opt. 17, 211 (1978).
[CrossRef] [PubMed]

S. D. Jacobs, in Proceedings Technical Program, Electro-Optics/Laser 78, Boston (19–21 Sep. 1978), p. 24.

Kelly, J.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Kelly, J. H.

J. H. Kelly, D. Brown, J. Opt. Soc. Am. 69, 1446A (1979).

Lewis, O.

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

Martin, W. S.

W. S. Martin, General Electric Technical Report 68-C-285 (August1968).

Minot, M. J.

Nee, N.

Rinefierd, J.

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

Sampath, R.

R. Sampath, Laboratory for Laser Energetics, Omega Tech Note 77, 28Aug.1978; W. S. Martin, General Electric Co.; private communication;M. Sparks, J. Appl. Phys. 42, 5029 (1971); J. R. Jasperse, J. D. Gianio, J. Appl. Phys. 43, 1686 (1972); B. Bendow, P. D. Gianio, Appl. Phys. 2, 1 (1973).
[CrossRef]

Schwenker, K. E.

K. E. Schwenker, J. Opt. Soc. Am. 69, 1418A (1979).

Soures, J.

J. Hoose, J. Soures, in Ref. 3, paper 4.1.

Thomas, S.

S. Thomas, KMS Fusion; private communication.

Trenholme, J. B.

J. B. Trenholme, NRL Memorandum Report 2480.

Warshaw, S.

S. Warshaw, Laboratory for Laser Energetics Internal Report 52 (Jan.1977).

Appl. Opt. (1)

J. Opt. Soc. Am. (3)

M. J. Minot, J. Opt. Soc. Am. 66, 515 (1976).
[CrossRef]

K. E. Schwenker, J. Opt. Soc. Am. 69, 1418A (1979).

J. H. Kelly, D. Brown, J. Opt. Soc. Am. 69, 1446A (1979).

Laboratory for Laser Energetics, Omega Tech Note 77 (1)

R. Sampath, Laboratory for Laser Energetics, Omega Tech Note 77, 28Aug.1978; W. S. Martin, General Electric Co.; private communication;M. Sparks, J. Appl. Phys. 42, 5029 (1971); J. R. Jasperse, J. D. Gianio, J. Appl. Phys. 43, 1686 (1972); B. Bendow, P. D. Gianio, Appl. Phys. 2, 1 (1973).
[CrossRef]

Other (16)

S. D. Jacobs, in Proceedings Technical Program, Electro-Optics/Laser 78, Boston (19–21 Sep. 1978), p. 24.

D. Harter, U. of Rochester, Institute of Optics; private communication.

D. C. Brown, J. A. Abate, J. Kelly, J. Hoose, in Digest of Topical Meeting on Inertial Confinement Fusion (Optical Society of America, Washington, D.C., 1980), paper ThF4.

Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL 50021-76 (1976), p. 2.19.

J. B. Trenholme, NRL Memorandum Report 2480.

Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL-50021-75 (1975), p. 148.

S. Warshaw, Laboratory for Laser Energetics Internal Report 52 (Jan.1977).

J. Rinefierd, S. Jacobs, D. Brown, J. A. Abate, O. Lewis, H. Appelbaum, at Tenth Symposium on Materials for High Power Lasers, NBS Special Publication 541 (Dec. 1978).

J. P. Chernoch, U.S. Patent3,525,053 (28Aug.1970).

W. S. Martin, General Electric Technical Report 68-C-285 (August1968).

G. Bret, M. C. Hurand, J. C. Boltz, at Conference on Laser Engineering and Applications, 28–30 May 1975, paper 4.2.

J. Hoose, J. Soures, in Ref. 3, paper 4.1.

S. Thomas, KMS Fusion; private communication.

Lawrence Livermore LaboratoryLaser Program Semi Annual Report, UCRL-50021-73-2 (July–December1973), p. 14.

Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL-50021-76 (1976), p. 2–80.

Lawrence Livermore LaboratoryLaser Program Annual Report, UCRL 50021-75 (1975), p. 224.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Schematic diagram of three-element disk amplifier.

Fig. 2
Fig. 2

Schematic diagram of three-element active mirror amplifier.

Fig. 3
Fig. 3

Key features of present active mirror design.

Fig. 4
Fig. 4

Reflectance properties of typical rear face active mirror coating.

Fig. 5
Fig. 5

Active mirror front face coating damage threshold dependence on pulse length for 2.5- and 3-cm thickness, assuming a non-overlapping damage threshold of 9 J/cm2 at 1 nsec.

Fig. 6
Fig. 6

Rear view of active mirror.

Fig. 7
Fig. 7

Current flashlamp array using staggered arc length lamps.

Fig. 8
Fig. 8

Effects of lamp diameter on stored energy density in a 2.2% doped Q-88 active mirror 2 cm thick.

Fig. 9
Fig. 9

Stored energy profile of 17-cm clear aperture active mirror

Fig. 10
Fig. 10

Energy storage for 3- × 24-cm active mirror, 3% doped, showing effect of using the Corning AR treatment on flashlamp water jackets and on blast shield.

Fig. 11
Fig. 11

Reflectance vs angle of incidence for two surfaces of Pyrex. One sample has been treated with the Corning AR process, while the other has not. Corning AR treatment retains its low reflectance even at large incident angles.

Fig. 12
Fig. 12

Spherical wavefront distortion, resulting from flashlamp pumping as a function of time into the pump pulse for a 25- × 3-cm slab of LHG-8, 2.5% doped. Maximum gain region is shown.

Fig. 13
Fig. 13

Time for full thermal recovery vs firing voltage for a 25- × 3-cm slab of LHG-8, 2.5% doped; 10 kV is normal operating voltage for this unit.

Fig. 14
Fig. 14

Effect on the stored energy of a 25- × 3-cm LHG-8 active mirror if the reflectivity of the front surface is made 100% for the various Nd pumpbands.

Fig. 15
Fig. 15

Measured and predicted small signal gains for 20- × 2.5-cm, 2% doped LHG-8 and Q-88 active mirrors (17-cm clear aperture).

Fig. 16
Fig. 16

Comparison of laser properties important to active mirror performance for three phosphate glasses.

Fig. 17
Fig. 17

Measured and predicted small signal gain of 25- × 3-cm, 2.5% doped LHG-8 active mirror (21-cm clear aperture).

Fig. 18
Fig. 18

Summary of performance of 17- and 21-cm clear aperture active mirrors.

Fig. 19
Fig. 19

Calculated scattering efficiency due to induced diffraction grating in a 3-cm thick active mirror.

Fig. 20
Fig. 20

Calculated effect on the scattering efficiency of the spectral width of a l00-psec 109-W/cm2 pulse for a 3-cm thick active mirror.

Fig. 21
Fig. 21

Schematic diagram of four-unit active mirror test setup.

Fig. 22
Fig. 22

Short pulse performance of four active mirrors with 15-cm diam beam for an average pulse width of 50 psec. Two LHG-8 and two Q-88 active mirrors doped at 2% were used for these tests.

Fig. 23
Fig. 23

Long pulse performance of four active mirrors with 15-cm diam beam for an average pulse width of 750 psec. Two LHG-8 and two Q-88 active mirror doped at 2% were used for these tests.

Fig. 24
Fig. 24

Predicted 50-psec performance of the single-pass and proposed double-pass four-unit 21-cm active mirror amplifier being constructed at LLE.

Fig. 25
Fig. 25

Predicted 1-nsec performance of the single-pass and proposed double-pass four-unit 21-cm active mirror amplifier being constructed at LLE.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

B = C 0 L n 2 n 0 I ( Z ) d Z ,
( E t 3 ) / ( r 4 ) ,
P ( τ ) = P 0 [ exp ( α τ ) - 1 exp ( - β τ )
E s ( τ ) = 0 τ exp [ - K ( τ - τ ) ] P ( τ ) d τ ,
spontaneous emission ( S . E . ) = 0 T P ( τ ) d τ - E s ( T ) .
S . E . ( τ 2 - τ 1 ) = P ( τ 2 ) - E s ( τ 2 ) - P ( τ 1 ) + E s ( τ 1 ) .

Metrics