Abstract

The rotational sensitivity of the fiber resonator gyro is derived and shown to be approximately equal to that of the fiber interferometer gyro for typical fiber and source parameters. The fiber resonator, like the fiber interferometer, is susceptible to errors due to thermally induced nonreciprocity; however, by reducing splice and coupler losses, it should be possible to reduce these errors well below those in the fiber interferometer.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Sagnac, C. R. Acad. Sci. Paris 157, 708, 1410 (1913).
  2. W. Macek, D. Davis, Appl. Phys. Lett. 2, 67 (1963).
    [CrossRef]
  3. V. Vali, R. W. Shorthill, Appl. Opt. 15, 1099 (1976).
    [CrossRef] [PubMed]
  4. J. L. Davis, S. Ezekiel, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).
  5. M. M. McLandrich, H. E. Rast, Proc. Soc. Photo Opt. Instrum. Eng. 157, 127 (1978).
  6. Shih-Chun Lin, T. G. Giallorenzi, Appl. Opt. 18, 915 (1979).
    [CrossRef] [PubMed]
  7. R. F. Cahill, E. Udd, Opt. Lett. 4, 93 (1979).
    [CrossRef] [PubMed]
  8. R. Goldstein, W. Goss, Opt. Eng. 18, 381 (1979).
    [CrossRef]
  9. S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
    [CrossRef]
  10. S. Ezekiel et al., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).
  11. F. Aronowitz, Laser Applications 1, M. Ross, Ed. (Academic, New York, 1971), pp. 134–200.
  12. D. M. Shupe, Appl. Opt. 19, 654 (1980).
    [CrossRef] [PubMed]
  13. A. H. Rosenthal, J. Opt. Soc. Am. 52, 1143 (1962).
    [CrossRef]
  14. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
    [CrossRef] [PubMed]
  15. S. Somekh et al., Appl. Phys. Lett. 22, 46 (1973).
    [CrossRef]
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 323–325.
  17. P. G. Cielo, Appl. Opt. 18, 2933 (1979).
    [CrossRef] [PubMed]
  18. D. Gloge, Appl. Opt. 10, 2252 (1971).
    [CrossRef] [PubMed]
  19. W. C. Goss, R. Goldstein, Opt. Eng. 18, 9 (1979).
  20. S. Machida et al., IEEE J. Quantum Electron. QE-15, 535 (1979).
    [CrossRef]
  21. R. H. Stolen et al., Appl. Phys. Lett. 33, 699 (1978).
    [CrossRef]

1980 (1)

1979 (7)

1978 (4)

R. H. Stolen et al., Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

S. Ezekiel et al., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

J. L. Davis, S. Ezekiel, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

M. M. McLandrich, H. E. Rast, Proc. Soc. Photo Opt. Instrum. Eng. 157, 127 (1978).

1977 (1)

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

1976 (1)

1973 (1)

S. Somekh et al., Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

1971 (1)

1963 (1)

W. Macek, D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

1962 (1)

1913 (1)

G. Sagnac, C. R. Acad. Sci. Paris 157, 708, 1410 (1913).

Aronowitz, F.

F. Aronowitz, Laser Applications 1, M. Ross, Ed. (Academic, New York, 1971), pp. 134–200.

Balsamo, S. R.

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 323–325.

Cahill, R. F.

Cielo, P. G.

Davis, D.

W. Macek, D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

Davis, J. L.

J. L. Davis, S. Ezekiel, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

Ezekiel, S.

J. L. Davis, S. Ezekiel, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

S. Ezekiel et al., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

Giallorenzi, T. G.

Gloge, D.

Goldstein, R.

R. Goldstein, W. Goss, Opt. Eng. 18, 381 (1979).
[CrossRef]

W. C. Goss, R. Goldstein, Opt. Eng. 18, 9 (1979).

Goss, W.

R. Goldstein, W. Goss, Opt. Eng. 18, 381 (1979).
[CrossRef]

Goss, W. C.

W. C. Goss, R. Goldstein, Opt. Eng. 18, 9 (1979).

Lin, Shih-Chun

Macek, W.

W. Macek, D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

Machida, S.

S. Machida et al., IEEE J. Quantum Electron. QE-15, 535 (1979).
[CrossRef]

McLandrich, M. M.

M. M. McLandrich, H. E. Rast, Proc. Soc. Photo Opt. Instrum. Eng. 157, 127 (1978).

Rast, H. E.

M. M. McLandrich, H. E. Rast, Proc. Soc. Photo Opt. Instrum. Eng. 157, 127 (1978).

Rosenthal, A. H.

Sagnac, G.

G. Sagnac, C. R. Acad. Sci. Paris 157, 708, 1410 (1913).

Sheem, S. K.

Shorthill, R. W.

Shupe, D. M.

Somekh, S.

S. Somekh et al., Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

Stolen, R. H.

R. H. Stolen et al., Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

Udd, E.

Vali, V.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 323–325.

Appl. Opt. (5)

Appl. Phys. Lett. (4)

R. H. Stolen et al., Appl. Phys. Lett. 33, 699 (1978).
[CrossRef]

W. Macek, D. Davis, Appl. Phys. Lett. 2, 67 (1963).
[CrossRef]

S. Ezekiel, S. R. Balsamo, Appl. Phys. Lett. 30, 478 (1977).
[CrossRef]

S. Somekh et al., Appl. Phys. Lett. 22, 46 (1973).
[CrossRef]

C. R. Acad. Sci. Paris (1)

G. Sagnac, C. R. Acad. Sci. Paris 157, 708, 1410 (1913).

IEEE J. Quantum Electron. (1)

S. Machida et al., IEEE J. Quantum Electron. QE-15, 535 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Eng. (2)

R. Goldstein, W. Goss, Opt. Eng. 18, 381 (1979).
[CrossRef]

W. C. Goss, R. Goldstein, Opt. Eng. 18, 9 (1979).

Opt. Lett. (2)

Proc. Soc. Photo Opt. Instrum. Eng. (1)

M. M. McLandrich, H. E. Rast, Proc. Soc. Photo Opt. Instrum. Eng. 157, 127 (1978).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

J. L. Davis, S. Ezekiel, Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131 (1978).

S. Ezekiel et al., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 68 (1978).

Other (2)

F. Aronowitz, Laser Applications 1, M. Ross, Ed. (Academic, New York, 1971), pp. 134–200.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), pp. 323–325.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Diagram of the fiber resonator gyro.

Fig. 2
Fig. 2

Plot of the normalized rotational sensitivity vs the coupling coefficient for various fiber lengths. Splice loss is 0.1 dB, the coupler loss is 0.3 dB, and the fiber loss is 2 dB/km.

Tables (2)

Tables Icon

Table I Parameters for Fiber Resonator Gyro

Tables Icon

Table II Comparison of Thermal Susceptibility of Fiber Resonator and Fiber Interferometer Gyros

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Δ f = 4 A λ p Ω ,
A o A i = t 14 2 exp [ - ( α + i δ ) ] 1 - t 12 2 exp [ - ( α + i δ ) ] ,
P o P i = C 2 exp ( - α ) [ 1 - T exp ( - α ) ] 2 + 4 T exp ( - α ) sin 2 ( δ / 2 ) ,
δ Ω λ p 4 A 2 Γ SNR ,
i s = η e h ν ( P 0 max - P 0 min ) ,
i n = e 2 η B P 0 max h ν ,
SNR = i s i n = η P i 2 B h ν 4 T C exp ( - 3 α / 2 ) [ 1 - T exp ( - α ) ] [ 1 + T exp ( - α ) ] 2 .
sin 2 Δ 2 = [ 1 - T exp ( - α ) ] 2 2 [ 1 + T 2 exp ( - 2 α ) ] ,
Γ = 2 c π L n c sin - 1 [ 1 - T exp ( - α ) ] 2 [ 1 + T 2 exp ( - 2 α ) ] .
Θ E n c L 2 Δ T 24 N A ( d n c d T + n c α ) interferometer .
Θ E L 2 Δ T 24 N A ( d n c d T + n c α ) resonator ,

Metrics