Abstract

A technique is described for determining absolute lengths up to 3 m from measurement of the interference fringe fractions for multiple wavelengths. The required accuracies of the wavelength ratio and fringe fraction reading are analyzed. To satisfy the accuracies, a low-cost simply stabilized He–Xe laser, operating simultaneously at two wavelengths, 3.51 and 3.37 μm, was developed. Using this laser the preliminary measurement of the wavelength ratio was made interferometrically with the length standard of a gauge block.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Sakurai, S. Seino, Bull. Natl. Res. Lab. Metrol. Tokyo 14, 34 (1967).
  2. H. Welling, B. Wellegehausen, Appl. Opt. 11, 1986 (1972).
    [CrossRef] [PubMed]
  3. P. Cerez, S. J. Bennett, Opt. Commun. 25, 1079 (1979).
  4. F. Spieweck, IEEE Trans. Instrum. Meas. IM-27, 398 (1978).
    [CrossRef]
  5. W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
    [CrossRef]
  6. M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 17, 2169 (1978).
    [CrossRef]
  7. C. R. Tilford, Appl. Opt. 16, 1857 (1977).
    [CrossRef] [PubMed]
  8. G. L. Bourdet, A. G. Orszag, Appl. Opt. 18, 225 (1979).
    [CrossRef] [PubMed]
  9. W. R. C. Rowley, D. C. Wilson, Nature London 200, 745 (1963).
    [CrossRef]
  10. W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
    [CrossRef]
  11. K. D. Mielenz, R. B. Stephens, K. E. Gillilland, K. F. Nefflen, J. Opt. Soc. Am. 56, 156 (1966).
    [CrossRef]
  12. H. Matsumoto, Jpn. J. Appl. Phys. 19, 713 (1980).
    [CrossRef]
  13. L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
    [CrossRef]
  14. H. Nagai, I. Taniguchi, Jpn. J. Appl. Phys. 12, 434 (1973).
    [CrossRef]
  15. B. Edlén, Metrologia 2, 71 (1966).
    [CrossRef]
  16. H. Matsumoto, Jpn. J. Appl. Phys. 18, 1661 (1979).
    [CrossRef]

1980 (1)

H. Matsumoto, Jpn. J. Appl. Phys. 19, 713 (1980).
[CrossRef]

1979 (3)

P. Cerez, S. J. Bennett, Opt. Commun. 25, 1079 (1979).

H. Matsumoto, Jpn. J. Appl. Phys. 18, 1661 (1979).
[CrossRef]

G. L. Bourdet, A. G. Orszag, Appl. Opt. 18, 225 (1979).
[CrossRef] [PubMed]

1978 (2)

F. Spieweck, IEEE Trans. Instrum. Meas. IM-27, 398 (1978).
[CrossRef]

M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 17, 2169 (1978).
[CrossRef]

1977 (1)

1973 (1)

H. Nagai, I. Taniguchi, Jpn. J. Appl. Phys. 12, 434 (1973).
[CrossRef]

1972 (1)

1970 (1)

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[CrossRef]

1967 (1)

Y. Sakurai, S. Seino, Bull. Natl. Res. Lab. Metrol. Tokyo 14, 34 (1967).

1966 (2)

1964 (1)

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

1963 (1)

W. R. C. Rowley, D. C. Wilson, Nature London 200, 745 (1963).
[CrossRef]

1962 (1)

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Bennett, S. J.

P. Cerez, S. J. Bennett, Opt. Commun. 25, 1079 (1979).

Bennett, W. R.

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

Bourdet, G. L.

Casperson, L.

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[CrossRef]

Cerez, P.

P. Cerez, S. J. Bennett, Opt. Commun. 25, 1079 (1979).

Edlén, B.

B. Edlén, Metrologia 2, 71 (1966).
[CrossRef]

Faust, W. L.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Garrett, C. G. B.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Gillilland, K. E.

Jacobs, S. F.

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

LaTourrette, J. T.

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

Matsumoto, H.

H. Matsumoto, Jpn. J. Appl. Phys. 19, 713 (1980).
[CrossRef]

H. Matsumoto, Jpn. J. Appl. Phys. 18, 1661 (1979).
[CrossRef]

McFarlane, R. A.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Mielenz, K. D.

Nagai, H.

H. Nagai, I. Taniguchi, Jpn. J. Appl. Phys. 12, 434 (1973).
[CrossRef]

Nefflen, K. F.

Ohtsu, M.

M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 17, 2169 (1978).
[CrossRef]

Orszag, A. G.

Patel, C. K. N.

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

Rabinowitz, P.

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

Rowley, W. R. C.

W. R. C. Rowley, D. C. Wilson, Nature London 200, 745 (1963).
[CrossRef]

Sakurai, Y.

Y. Sakurai, S. Seino, Bull. Natl. Res. Lab. Metrol. Tokyo 14, 34 (1967).

Seino, S.

Y. Sakurai, S. Seino, Bull. Natl. Res. Lab. Metrol. Tokyo 14, 34 (1967).

Spieweck, F.

F. Spieweck, IEEE Trans. Instrum. Meas. IM-27, 398 (1978).
[CrossRef]

Stephens, R. B.

Tako, T.

M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 17, 2169 (1978).
[CrossRef]

Taniguchi, I.

H. Nagai, I. Taniguchi, Jpn. J. Appl. Phys. 12, 434 (1973).
[CrossRef]

Tilford, C. R.

Wellegehausen, B.

Welling, H.

Wilson, D. C.

W. R. C. Rowley, D. C. Wilson, Nature London 200, 745 (1963).
[CrossRef]

Yariv, A.

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

L. Casperson, A. Yariv, Appl. Phys. Lett. 17, 259 (1970).
[CrossRef]

W. L. Faust, R. A. McFarlane, C. K. N. Patel, C. G. B. Garrett, Appl. Phys. Lett. 1, 85 (1962).
[CrossRef]

W. R. Bennett, S. F. Jacobs, J. T. LaTourrette, P. Rabinowitz, Appl. Phys. Lett. 5, 56 (1964).
[CrossRef]

Bull. Natl. Res. Lab. Metrol. Tokyo (1)

Y. Sakurai, S. Seino, Bull. Natl. Res. Lab. Metrol. Tokyo 14, 34 (1967).

IEEE Trans. Instrum. Meas. (1)

F. Spieweck, IEEE Trans. Instrum. Meas. IM-27, 398 (1978).
[CrossRef]

J. Opt. Soc. Am. (1)

Jpn. J. Appl. Phys. (4)

H. Nagai, I. Taniguchi, Jpn. J. Appl. Phys. 12, 434 (1973).
[CrossRef]

H. Matsumoto, Jpn. J. Appl. Phys. 18, 1661 (1979).
[CrossRef]

M. Ohtsu, T. Tako, Jpn. J. Appl. Phys. 17, 2169 (1978).
[CrossRef]

H. Matsumoto, Jpn. J. Appl. Phys. 19, 713 (1980).
[CrossRef]

Metrologia (1)

B. Edlén, Metrologia 2, 71 (1966).
[CrossRef]

Nature London (1)

W. R. C. Rowley, D. C. Wilson, Nature London 200, 745 (1963).
[CrossRef]

Opt. Commun. (1)

P. Cerez, S. J. Bennett, Opt. Commun. 25, 1079 (1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Relation of laser gain curves and cavity modes.

Fig. 2
Fig. 2

Schematic of the He–Xe laser developed.

Fig. 3
Fig. 3

View of the He–Xe laser.

Fig. 4
Fig. 4

Spectrum of the laser lines.

Fig. 5
Fig. 5

Chart record of the overall power output obtained using the 3.51- and 3.37-μm lines for tuning cavity length. The numbers indicate the sequence of the mode. Scanning is not linear.

Fig. 6
Fig. 6

Infrared interferometer for length measurement.

Fig. 7
Fig. 7

Chart records of the interference fringes obtained (a) for the 3.51-μm line, and (b) for the 3.37-μm line. The numbers 1 and 2 show the gauge fringe and the base fringe, respectively. Pen displacement in a three-channel strip-chart recorder is not compensated.

Tables (1)

Tables Icon

Table I Experimental Results

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

L = ( M i + m + i ) · λ i / 2 ,
m = [ ( M 2 + 2 ) - ( M 1 + 1 ) · f ] / ( f - 1 ) ,
δ m = 2 f f - 1 δ + 2 L λ 1 · δ f f - 1 ,
N i = 2 D i / λ i ,
f + δ f = ( D 1 + Δ D + λ 1 / 2 ) ( N 2 + 1 ) ( D 2 + Δ D + λ 1 / 2 ) ( N 1 + 1 ) f [ 1 + Δ D ( D 2 - D 1 ) D 1 D 2 + λ 2 - λ 1 2 D 2 ] .

Metrics