Abstract

This study presents the IR radiative transport properties of brush fire smoke clouds computed for a model with finite horizontal dimensions as well as the more common plane-parallel model. The finite model is a 3-D version of the two-stream approximation applied to cubic clouds of steam, carbon, and silicates. Assumptions are made with regard to the shape and size distributions of the smoke particles. It is shown that 11.5-μm radiometry can detect fires beneath smoke clouds if the path integrated mass density of the smoke is ≲3 g/m2.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Niederleitner, “Detecting Holdover Fires with the AGA Thermovision 750 Infrared Scanner,” Information report NOR-X-151 (Northern Forest Research Centre, Canadian Forestry Division, Edmonton, Alta., 1976).
  2. R. Tice, J. Euskirchen, Opt. Spectra 12-9, 32 (1978).
  3. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  4. H. R. Carlon, D. H. Anderson, M. E. Milham, T. L. Tarnove, R. H. Frickel, I. Sindoni, Appl. Opt. 16, 1598 (1977).
    [CrossRef] [PubMed]
  5. R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).
  6. W. D. Connor, J. R. Hodkinson, Optical Properties and Visual Effects of Smoke Stack Plumes (U.S. DHEW, Cincinnati, Ohio, 1967) Doc. AP30.
  7. A. B. Carpenter, D. K. True, E. J. Stanek, J. Air Pollut. Control Assoc. 27, 574 (1977).
    [CrossRef]
  8. J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971).
    [CrossRef]
  9. J. T. Peterson, J. A. Weinman, J. Geophys. Res. 74, 6947 (1969).
    [CrossRef]
  10. J. R. Aronson, P. F. Strong, Appl. Opt. 14, 2914 (1975).
    [CrossRef] [PubMed]
  11. W. M. Irvine, Astrophys. J. 142, 1563 (1965).
    [CrossRef]
  12. K. N. Liou, S. C. Ou, J. Atmos. Sci. 36, 1985 (1979).
    [CrossRef]
  13. Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).
  14. J. A. Weinman, R. Davies, J. Geophys. Res. 83, 3099 (1978).
    [CrossRef]

1980 (1)

Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).

1979 (1)

K. N. Liou, S. C. Ou, J. Atmos. Sci. 36, 1985 (1979).
[CrossRef]

1978 (2)

J. A. Weinman, R. Davies, J. Geophys. Res. 83, 3099 (1978).
[CrossRef]

R. Tice, J. Euskirchen, Opt. Spectra 12-9, 32 (1978).

1977 (2)

1975 (1)

1971 (1)

J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

1969 (1)

J. T. Peterson, J. A. Weinman, J. Geophys. Res. 74, 6947 (1969).
[CrossRef]

1965 (1)

W. M. Irvine, Astrophys. J. 142, 1563 (1965).
[CrossRef]

Anderson, D. H.

Aronson, J. R.

Carlon, H. R.

Carpenter, A. B.

A. B. Carpenter, D. K. True, E. J. Stanek, J. Air Pollut. Control Assoc. 27, 574 (1977).
[CrossRef]

Connor, W. D.

W. D. Connor, J. R. Hodkinson, Optical Properties and Visual Effects of Smoke Stack Plumes (U.S. DHEW, Cincinnati, Ohio, 1967) Doc. AP30.

Davies, R.

Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).

J. A. Weinman, R. Davies, J. Geophys. Res. 83, 3099 (1978).
[CrossRef]

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Euskirchen, J.

R. Tice, J. Euskirchen, Opt. Spectra 12-9, 32 (1978).

Frickel, R. H.

Gibson, L.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Harshvardhan,

Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).

Hatch, A. B.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Hodkinson, J. R.

W. D. Connor, J. R. Hodkinson, Optical Properties and Visual Effects of Smoke Stack Plumes (U.S. DHEW, Cincinnati, Ohio, 1967) Doc. AP30.

Irvine, W. M.

W. M. Irvine, Astrophys. J. 142, 1563 (1965).
[CrossRef]

King, N. K.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Liou, K. N.

K. N. Liou, S. C. Ou, J. Atmos. Sci. 36, 1985 (1979).
[CrossRef]

MacArthur, D. A.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Milham, M. E.

Niederleitner, J.

J. Niederleitner, “Detecting Holdover Fires with the AGA Thermovision 750 Infrared Scanner,” Information report NOR-X-151 (Northern Forest Research Centre, Canadian Forestry Division, Edmonton, Alta., 1976).

Ou, S. C.

K. N. Liou, S. C. Ou, J. Atmos. Sci. 36, 1985 (1979).
[CrossRef]

Packham, D. R.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Peterson, J. T.

J. T. Peterson, J. A. Weinman, J. Geophys. Res. 74, 6947 (1969).
[CrossRef]

Sindoni, I.

Stanek, E. J.

A. B. Carpenter, D. K. True, E. J. Stanek, J. Air Pollut. Control Assoc. 27, 574 (1977).
[CrossRef]

Strong, P. F.

Tarnove, T. L.

Taylor, R. J.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Tice, R.

R. Tice, J. Euskirchen, Opt. Spectra 12-9, 32 (1978).

True, D. K.

A. B. Carpenter, D. K. True, E. J. Stanek, J. Air Pollut. Control Assoc. 27, 574 (1977).
[CrossRef]

Twitty, J. T.

J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

Vines, R. G.

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

Weinman, J. A.

Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).

J. A. Weinman, R. Davies, J. Geophys. Res. 83, 3099 (1978).
[CrossRef]

J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

J. T. Peterson, J. A. Weinman, J. Geophys. Res. 74, 6947 (1969).
[CrossRef]

Appl. Opt. (2)

Astrophys. J. (1)

W. M. Irvine, Astrophys. J. 142, 1563 (1965).
[CrossRef]

J. Air Pollut. Control Assoc. (1)

A. B. Carpenter, D. K. True, E. J. Stanek, J. Air Pollut. Control Assoc. 27, 574 (1977).
[CrossRef]

J. Appl. Meteorol. (1)

J. T. Twitty, J. A. Weinman, J. Appl. Meteorol. 10, 725 (1971).
[CrossRef]

J. Atm. Sci. (1)

Harshvardhan, J. A. Weinman, R. Davies, J. Atm. Sci. (1980 to 1981).

J. Atmos. Sci. (1)

K. N. Liou, S. C. Ou, J. Atmos. Sci. 36, 1985 (1979).
[CrossRef]

J. Geophys. Res. (2)

J. T. Peterson, J. A. Weinman, J. Geophys. Res. 74, 6947 (1969).
[CrossRef]

J. A. Weinman, R. Davies, J. Geophys. Res. 83, 3099 (1978).
[CrossRef]

Opt. Spectra (1)

R. Tice, J. Euskirchen, Opt. Spectra 12-9, 32 (1978).

Other (4)

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

R. G. Vines, L. Gibson, A. B. Hatch, N. K. King, D. A. MacArthur, D. R. Packham, R. J. Taylor, On the Nature, Properties and Behavior of Bush-Fire Smoke (CSIRO, Melbourne, 1971).

W. D. Connor, J. R. Hodkinson, Optical Properties and Visual Effects of Smoke Stack Plumes (U.S. DHEW, Cincinnati, Ohio, 1967) Doc. AP30.

J. Niederleitner, “Detecting Holdover Fires with the AGA Thermovision 750 Infrared Scanner,” Information report NOR-X-151 (Northern Forest Research Centre, Canadian Forestry Division, Edmonton, Alta., 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Comparison of phase functions derived from Mie theory (●) with those approximated by double Henyey-Greenstein functions with the parameters cited in Table II (solid line).

Fig. 2
Fig. 2

Schematic view of 11.5-μm radiative transfer in a plane parallel model smoke cloud (a) and of the same problem for a finite cloud (b).

Fig. 3
Fig. 3

Radiances emerging upward from plane parallel clouds as a function of viewing angle. The thickness of the clouds are given in units of ρ Z * . The solid lines represent the approximate values and the dots represent the radiances derived from Neumann solutions: (a) Carbon, (b) Glass, (c) Water Haze M, (d) Water Cloud C-1.

Fig. 4
Fig. 4

Radiances, in units of brightness temperature, emerging upward from cubic clouds averaged over the projected area as a function of viewing angle. These results are obtained from the two-stream approximation. The dimensions of the cubic clouds are given in units of ρ Z * : (a) Carbon, (b) Glass, (c) Water Haze M, (d) Water Cloud C-1.

Fig. 5
Fig. 5

Radiances, in units of brightness temperature, along a transection at y = 0.35 Y * as a function of position on the upper and side surfaces of cubic carbon clouds for thin clouds with ρ Z * = ρ X * = 3.16 g / m 2 and thick clouds with ρ Z * = ρ X * = 31.6 g / m 2 at vertical [(a) and (b)] and grazing [(c) and (d)] viewing angles. The temperatures cited designate the values where the temperature is uniform.

Fig. 6
Fig. 6

Same as Fig. 5 for glass smoke clouds.

Tables (3)

Tables Icon

Table I Characteristics of Australian Bush Fires5

Tables Icon

Table II Radiative Properties of Model Smokes at λ = 11.5 μm

Tables Icon

Table III Downward Viewed Brush Fire Brightness Temperatures (°C) for Plane Parallel Smoke Clouds with T0 = 46.8°C and T1 = 36.8°C.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d n d r α r - 5             0.003 < r < 0.4 μ m .
d n d r = ( 10 7 cm - 3 μ m - 1 0.006 μ m < r < 0.006 μ m 400 / r 2 cm - 3 μ m - 1 r < 0.05 μ m 1 / r 4 cm - 3 μ m - 1 0.05             μ m < r < 2 μ m 0 r > 2 μ m ,
d n d r = ( 4.1 × 10 4 cm - 3 μ m - 1 0.03 μ m r < 0.1 μ m 13 r - 3.5 cm - 3 μ m - 1 0.1             μ m r 15 μ m
P ( θ ) = b P HG ( g 1 , θ ) + ( 1 - b ) P HG ( g 2 , θ ) ,
P HG ( g i , θ ) = ( 1 - g i 2 ) / ( 1 + g i 2 - 2 g i cos θ ) 3 / 2 .
μ d I d z = - k I + k a 4 π 4 π P ( Ω Ω ) I ( Ω ) d Ω + ( 1 - a ) k B 0 ,
I ( Z * , μ < 0 ) = 0 ,             I ( 0 , μ > 0 ) = B 1 ,
I + ( x , y , z , ϕ ) = I z + ( x , y , z ) + I x ( x , y , z ) cos ϕ + I y ( x , y , z ) sin ϕ ,
I - ( x , y , z , ϕ ) = I z - ( x , y , z ) + I x ( x , y , z ) cos ϕ + I y ( x , y , z ) s i n ϕ .
I 0 = ( I z + + I z - ) / 2 ,
I 1 = ( I z + - I z - ) / 2 = - I 0 z / 3 k ( 1 - a g ) ,
I y = - I 0 y / 3 2 k ( 1 - a g ) ,
I x = - I 0 x / 3 2 k ( 1 - a g ) .
2 I 0 = 3 k 2 ( 1 - a ) ( 1 - a g ) ( I 0 - B 0 ) ,
( I 0 + I 0 h z ) z = Z * = 0 ,
( I 0 - I 0 h z ) z = 0 = B 1 ,
( I 0 ± I 0 h x ) x = ± X * / 2 = B 2 2 ,
( ( I 0 ± I 0 h y ) y = ± Y * / 2 = B 2 2 ,
h = 3 ( 1 - a g ) k , h = 3 2 4 π ( 1 - a g ) k .
J = ( 1 - a ) B 0 + a I 0 + a g ( I 1 + 3 2 ( 1 - μ 2 ) I x ) .
I ( x , y , z , θ , 0 ) = k 0 S * ( θ ) J exp [ - k s ( θ ) ] d x + B i exp [ - k S * ( θ ) ] ( i = 1 , 2 ) ,

Metrics