Abstract

A fiber-optic linear accelerometer based on intensity modulation produced by lateral displacement of a cantilevered fiber has been fabricated and tested. The model reported on is constructed with multimode fiber and has a displacement sensitivity of 6.4 × 10−13 m. The device has general application as a linear accelerometer with the inherent advantages of remote optical fiber sensing. Particular attention is given to sonobuoy hydrophone applications in which the present model has a sensitivity limit corresponding to 75 dB relative to 1 μPa at 1 kHz. Means for substantially improving the accelerometer’s sensitivity as a hydrophone are discussed.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
    [CrossRef] [PubMed]
  2. J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
    [CrossRef]
  3. J. A. Bucaro, E. F. Carome, Appl. Opt. 17, 330 (1978).
    [CrossRef] [PubMed]
  4. B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
    [CrossRef]
  5. G. B. Hocker, Opt. Lett. 4, 320 (1979).
    [CrossRef] [PubMed]
  6. J. N. Fields, Appl. Opt. 18, 3533 (1979).
    [CrossRef] [PubMed]
  7. W. B. Spillman, D. H. McMahon, Appl. Opt. 19, 113 (1980).
    [CrossRef] [PubMed]
  8. R. L. Phillips, Opt. Lett. 5, 318 (1980).
    [CrossRef] [PubMed]
  9. E. F. Carome, K. P. Koo, Opt. Lett. 5, 359 (1980).
    [CrossRef] [PubMed]
  10. C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
    [CrossRef]
  11. T. Baumeister, E. A. Avallone, T. Baumeister, Eds., Mark’s Standard Handbook for Mechanical Engineers (McGraw-Hill, New York, 1978).
  12. N. S. Kapany, Fiber Optics—Principles and Applications (Academic, New York, 1967).
  13. A. W. Lightstone, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1980), p. 267.
  14. D. I. G. Jones, J. P. Henderson, Shock Vib. Bull. Part 2, 48, 1 (Sept.1978).
  15. V. L. Streeter, Fluid Dynamics (McGraw-Hill, New York, 1948), p. 67.

1980 (3)

1979 (2)

1978 (2)

D. I. G. Jones, J. P. Henderson, Shock Vib. Bull. Part 2, 48, 1 (Sept.1978).

J. A. Bucaro, E. F. Carome, Appl. Opt. 17, 330 (1978).
[CrossRef] [PubMed]

1977 (3)

B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
[CrossRef]

J. A. Bucaro, H. D. Dardy, E. F. Carome, Appl. Opt. 16, 1761 (1977).
[CrossRef] [PubMed]

J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

1956 (1)

C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
[CrossRef]

Bhuta, P. G.

J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Bucaro, J. A.

Carome, E. F.

Cole, J. G.

J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Culshaw, B.

B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
[CrossRef]

Dardy, H. D.

Davies, D. E. N.

B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
[CrossRef]

Fields, J. N.

Henderson, J. P.

D. I. G. Jones, J. P. Henderson, Shock Vib. Bull. Part 2, 48, 1 (Sept.1978).

Hocker, G. B.

Johnson, R. L.

J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

Jones, D. I. G.

D. I. G. Jones, J. P. Henderson, Shock Vib. Bull. Part 2, 48, 1 (Sept.1978).

Jones, J. L.

C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
[CrossRef]

Kapany, N. S.

N. S. Kapany, Fiber Optics—Principles and Applications (Academic, New York, 1967).

Kendall, J. M.

C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
[CrossRef]

Kingley, S. A.

B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
[CrossRef]

Koo, K. P.

Leslie, C. B.

C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
[CrossRef]

Lightstone, A. W.

A. W. Lightstone, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1980), p. 267.

McMahon, D. H.

Phillips, R. L.

Spillman, W. B.

Streeter, V. L.

V. L. Streeter, Fluid Dynamics (McGraw-Hill, New York, 1948), p. 67.

Appl. Opt. (4)

Electron. Lett. (1)

B. Culshaw, D. E. N. Davies, S. A. Kingley, Electron. Lett. 13, 760 (1977).
[CrossRef]

J. Acoust. Soc. Am. (2)

J. G. Cole, R. L. Johnson, P. G. Bhuta, J. Acoust. Soc. Am. 62, 1136 (1977).
[CrossRef]

C. B. Leslie, J. M. Kendall, J. L. Jones, J. Acoust. Soc. Am. 28, 711 (1956).
[CrossRef]

Opt. Lett. (3)

Shock Vib. Bull. Part 2 (1)

D. I. G. Jones, J. P. Henderson, Shock Vib. Bull. Part 2, 48, 1 (Sept.1978).

Other (4)

V. L. Streeter, Fluid Dynamics (McGraw-Hill, New York, 1948), p. 67.

T. Baumeister, E. A. Avallone, T. Baumeister, Eds., Mark’s Standard Handbook for Mechanical Engineers (McGraw-Hill, New York, 1978).

N. S. Kapany, Fiber Optics—Principles and Applications (Academic, New York, 1967).

A. W. Lightstone, in Digest of Topical Meeting on Optical Fiber Communication (Optical Society of America, Washington, D.C., 1980), p. 267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional view of acoustic sensor.

Fig. 2
Fig. 2

Approximation of optical power coupled between fibers as a function of lateral displacement in cantilevered fiber sensor.

Fig. 3
Fig. 3

Block diagram of laboratory experiment.

Fig. 4
Fig. 4

Experimental results in terms of voltage output of transimpedance amplifier vs double amplitude displacement of the sensor housing.

Fig. 5
Fig. 5

Frequency response of acoustic sensor for constant pressure in terms of voltage output of transimpedance amplifier.

Fig. 6
Fig. 6

Experimental sensitivity of acoustic sensor compared to deep-sea noise levels.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ω = [ 3 E I z ( m + 0.23 m b ) l 3 ] 1 / 2 ,
V s h = ( 2 q P 0 R 0 f ) 1 / 2 R F ,
V t h = ( 4 k T f R F ) 1 / 2 ,
V 1 / f = ( 1 + f c / f ) 1 / 2 V t h ,
Δ S = 2 / 4 ( 127 nm ) 44 nV 3.1 mV 6.4 × 10 - 13 m ,
= p ω ρ 0 c ,
Δ S = 6.37 × 10 - 13 m 1.06 × 10 - 16 m / μ Pa = 6 × 10 3 μ Pa ( 75 dB re μ Pa ) .
r 2 r 1 > N . A ( n 2 - 1 ) 1 / 2 ,
ρ V d U d t = ρ V d u d t + m ( d u d t - d U d t ) ,
( d u d t - d U d t )
d U d t / d u d t = 3 2 ( ρ / ρ ) + 1 .
U / u = 3 2 ( ρ / ρ ) + 1 .

Metrics