Abstract

The effect of optical signal intensity at the wavelength of system operation (0.85 μm) on the recovery of the radiation-induced attenuation in optical fiber waveguides following exposure to a 3700-rad dose of ionizing radiation has been investigated. Photobleaching has been observed in both pure and doped silica core fibers, although the effect is more pronounced in the former.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For an extensive review of radiation damage in optical fiber waveguides see E. J. Friebele, Opt. Eng. 18, 552 (1979).
    [CrossRef]
  2. G. H. Sigel, M. J. Marrone, J. Non-Cryst. Solids, in press.
  3. E. J. Friebele, P. C. Schultz, M. E. Gingerich, Appl. Opt. 19, 2910 (1980).
    [CrossRef] [PubMed]
  4. E. J. Friebele, M. E. Gingerich, in Physics of Fiber Optics, B. Bendow, S. S. Mitra, Eds. (American Ceramic Society, Columbus, Ohio, 1981), p. 387.
  5. S. Share, J. Wasilik, IEEE Trans. Nucl. Sci. NS-26, 4802 (1979).
    [CrossRef]
  6. J. G. Titchmarsh, Electron. Lett. 15, 111 (1979).
    [CrossRef]
  7. E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
    [CrossRef]
  8. E. J. Friebele, M. E. Gingerich, in Proceedings, Sixth Conference on Optical Communication, IEE Conference Publication Number 190 (IEE, London, 1980), p. 121; E. J. Friebele, M. E. Gingerich, in Proceedings of the Fiber Optics in the Nuclear Environment Symposium, 25–27 Mar. 1980, Vol 2, R. C. Webb, Chairman (Defense Nuclear Agency Document DNA 5308P-2, Washington, D.C.1980), p. 129.
  9. E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
    [CrossRef]
  10. E. J. Friebele, M. E. Gingerich, J. Non-Cryst. Solids 38 and 39, 245 (1980).
    [CrossRef]
  11. E. J. Friebele, M. E. Gingerich, Am. Ceram. Soc. Bull. 60, 861 (1981).
  12. The <5% difference between the initial losses of the dark and low power data shown in Figs. 2 and 3 arises because of differences in the total dose due to the difficulty of inserting and removing the sample from the source with accuracy greater than ~0.5 sec.

1981 (1)

E. J. Friebele, M. E. Gingerich, Am. Ceram. Soc. Bull. 60, 861 (1981).

1980 (2)

E. J. Friebele, M. E. Gingerich, J. Non-Cryst. Solids 38 and 39, 245 (1980).
[CrossRef]

E. J. Friebele, P. C. Schultz, M. E. Gingerich, Appl. Opt. 19, 2910 (1980).
[CrossRef] [PubMed]

1979 (4)

S. Share, J. Wasilik, IEEE Trans. Nucl. Sci. NS-26, 4802 (1979).
[CrossRef]

J. G. Titchmarsh, Electron. Lett. 15, 111 (1979).
[CrossRef]

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

For an extensive review of radiation damage in optical fiber waveguides see E. J. Friebele, Opt. Eng. 18, 552 (1979).
[CrossRef]

1978 (1)

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

Chernov, P. V.

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Dianov, E. M.

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Friebele, E. J.

E. J. Friebele, M. E. Gingerich, Am. Ceram. Soc. Bull. 60, 861 (1981).

E. J. Friebele, M. E. Gingerich, J. Non-Cryst. Solids 38 and 39, 245 (1980).
[CrossRef]

E. J. Friebele, P. C. Schultz, M. E. Gingerich, Appl. Opt. 19, 2910 (1980).
[CrossRef] [PubMed]

For an extensive review of radiation damage in optical fiber waveguides see E. J. Friebele, Opt. Eng. 18, 552 (1979).
[CrossRef]

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

E. J. Friebele, M. E. Gingerich, in Physics of Fiber Optics, B. Bendow, S. S. Mitra, Eds. (American Ceramic Society, Columbus, Ohio, 1981), p. 387.

E. J. Friebele, M. E. Gingerich, in Proceedings, Sixth Conference on Optical Communication, IEE Conference Publication Number 190 (IEE, London, 1980), p. 121; E. J. Friebele, M. E. Gingerich, in Proceedings of the Fiber Optics in the Nuclear Environment Symposium, 25–27 Mar. 1980, Vol 2, R. C. Webb, Chairman (Defense Nuclear Agency Document DNA 5308P-2, Washington, D.C.1980), p. 129.

Gingerich, M. E.

E. J. Friebele, M. E. Gingerich, Am. Ceram. Soc. Bull. 60, 861 (1981).

E. J. Friebele, M. E. Gingerich, J. Non-Cryst. Solids 38 and 39, 245 (1980).
[CrossRef]

E. J. Friebele, P. C. Schultz, M. E. Gingerich, Appl. Opt. 19, 2910 (1980).
[CrossRef] [PubMed]

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

E. J. Friebele, M. E. Gingerich, in Proceedings, Sixth Conference on Optical Communication, IEE Conference Publication Number 190 (IEE, London, 1980), p. 121; E. J. Friebele, M. E. Gingerich, in Proceedings of the Fiber Optics in the Nuclear Environment Symposium, 25–27 Mar. 1980, Vol 2, R. C. Webb, Chairman (Defense Nuclear Agency Document DNA 5308P-2, Washington, D.C.1980), p. 129.

E. J. Friebele, M. E. Gingerich, in Physics of Fiber Optics, B. Bendow, S. S. Mitra, Eds. (American Ceramic Society, Columbus, Ohio, 1981), p. 387.

Jaeger, R. E.

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

Kornienko, L. S.

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Marrone, M. J.

G. H. Sigel, M. J. Marrone, J. Non-Cryst. Solids, in press.

Nikitin, E. P.

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Rybaltovskii, A. O.

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Schultz, P. C.

Share, S.

S. Share, J. Wasilik, IEEE Trans. Nucl. Sci. NS-26, 4802 (1979).
[CrossRef]

Sigel, G. H.

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

G. H. Sigel, M. J. Marrone, J. Non-Cryst. Solids, in press.

Titchmarsh, J. G.

J. G. Titchmarsh, Electron. Lett. 15, 111 (1979).
[CrossRef]

Wasilik, J.

S. Share, J. Wasilik, IEEE Trans. Nucl. Sci. NS-26, 4802 (1979).
[CrossRef]

Am. Ceram. Soc. Bull. (1)

E. J. Friebele, M. E. Gingerich, Am. Ceram. Soc. Bull. 60, 861 (1981).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

E. J. Friebele, R. E. Jaeger, G. H. Sigel, M. E. Gingerich, Appl. Phys. Lett. 32, 95 (1978); G. H. Sigel, E. J. Friebele, M. E. Gingerich, L. N. Hayden, IEEE Trans. Nucl. Sci. NS-26, 4796 (1979).
[CrossRef]

Electron. Lett. (1)

J. G. Titchmarsh, Electron. Lett. 15, 111 (1979).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Share, J. Wasilik, IEEE Trans. Nucl. Sci. NS-26, 4802 (1979).
[CrossRef]

J. Non-Cryst. Solids (1)

E. J. Friebele, M. E. Gingerich, J. Non-Cryst. Solids 38 and 39, 245 (1980).
[CrossRef]

Opt. Eng. (1)

For an extensive review of radiation damage in optical fiber waveguides see E. J. Friebele, Opt. Eng. 18, 552 (1979).
[CrossRef]

Sov. J. Quantum Electron. (1)

E. M. Dianov, L. S. Kornienko, E. P. Nikitin, A. O. Rybaltovskii, P. V. Chernov, Sov. J. Quantum Electron. 9, 636 (1979).
[CrossRef]

Other (4)

E. J. Friebele, M. E. Gingerich, in Proceedings, Sixth Conference on Optical Communication, IEE Conference Publication Number 190 (IEE, London, 1980), p. 121; E. J. Friebele, M. E. Gingerich, in Proceedings of the Fiber Optics in the Nuclear Environment Symposium, 25–27 Mar. 1980, Vol 2, R. C. Webb, Chairman (Defense Nuclear Agency Document DNA 5308P-2, Washington, D.C.1980), p. 129.

G. H. Sigel, M. J. Marrone, J. Non-Cryst. Solids, in press.

E. J. Friebele, M. E. Gingerich, in Physics of Fiber Optics, B. Bendow, S. S. Mitra, Eds. (American Ceramic Society, Columbus, Ohio, 1981), p. 387.

The <5% difference between the initial losses of the dark and low power data shown in Figs. 2 and 3 arises because of differences in the total dose due to the difficulty of inserting and removing the sample from the source with accuracy greater than ~0.5 sec.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Decay of the radiation-induced attenuation in an ITT T323 polymer-clad high OH content silica core fiber as a function of different optical intensities propagating in the fiber after irradiation. Nominal core diameter = 200 μm; T = 27°C. Power density in the fiber for 1.57 mW = 5 W/cm2.

Fig. 2
Fig. 2

Decay of the radiation-induced attenuation in a Quartz Products Corp. polymer-clad low OH content silica core fiber propagating different levels of optical power during recovery. Core diameter = 200 μm; T = 27°C. Power density in the fiber for 1.49 mW = 4.7 W/cm2.

Fig. 3
Fig. 3

Decay of the radiation-induced attenuation of a Corning Glass Works short distance fiber and a prototype Ge–P-doped silica core fiber propagating different levels of optical power during recovery following irradiation. The nominal core diameter of the SDF fiber was 100 μm; that of the Ge–P-doped fiber was 50 μm. Power density for 2.11 and 1.21 mW is 26.9 and 61.6 W/cm2 in the SDF and prototype fibers, respectively.

Fig. 4
Fig. 4

Decay of the radiation-induced attenuation of a Valtec MG-05 Ge–P-doped silica core fiber and a prototype binary Ge-doped silica core as a function of different levels of optical power propagating in the fibers during recovery following irradiation. The core diameter of the fibers was 60 μm; T = 27°C. The power density in the fibers for 0.90 mW is 31.8 W/cm2.

Tables (1)

Tables Icon

Table I Intrinsic Loss, Decay Time, and Radiation-Induced Loss at 0.85 μm Measured 0.25 sec after Irradiation as a Function of Optical Power Transmitted in the Fibers

Metrics