Abstract

Measuring the reflectance variation ΔR under dc magnetic field at Ar+ 0.5017-μm laser line for both corpuscle and plasma human blood samples and applying statistical processing to a 2-D display of ΔR, we can obtain useful information on whether the disease is malignant or benign. Furthermore, for indistinguishable samples within the critical region the correlation between ΔR and conventional blood-analysis parameters gives supplemental information. Applicational feasibility of these experimental results to clinical diagnosis is described together with qualitative considerations of the characteristics obtained.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Dunphy, L. W. Way, Current Surgical Diagnosis and Treatments (Maruzen, Tokyo, 1978).
  2. I. Kanai, M. Kanai, Manual of Clinical Laboratory Methods and Diagnosis (Kimbara, Tokyo, 1975), Chap. 19, pp. 1–12. (in Japanese).
  3. A. M. Véjex, J. Opt. Soc. Am. 70, 560 (1980).
    [CrossRef]
  4. A. Yamagishi et al., Oyo Buturi 49, 668 (1980).
  5. K. G. Budden, Radio Wave in the Ionosphere (Cambridge U. P., London, 1961), p. 199.
  6. H. Sato, H. Hayashi, unpublished.
  7. K. Maeda, M. Goto, Propagation of Electromagnetic Wave (Iwanami, Tokyo, 1953), p. 29. (in Japanese).

1980 (2)

A. Yamagishi et al., Oyo Buturi 49, 668 (1980).

A. M. Véjex, J. Opt. Soc. Am. 70, 560 (1980).
[CrossRef]

Budden, K. G.

K. G. Budden, Radio Wave in the Ionosphere (Cambridge U. P., London, 1961), p. 199.

Dunphy, J. E.

J. E. Dunphy, L. W. Way, Current Surgical Diagnosis and Treatments (Maruzen, Tokyo, 1978).

Goto, M.

K. Maeda, M. Goto, Propagation of Electromagnetic Wave (Iwanami, Tokyo, 1953), p. 29. (in Japanese).

Hayashi, H.

H. Sato, H. Hayashi, unpublished.

Kanai, I.

I. Kanai, M. Kanai, Manual of Clinical Laboratory Methods and Diagnosis (Kimbara, Tokyo, 1975), Chap. 19, pp. 1–12. (in Japanese).

Kanai, M.

I. Kanai, M. Kanai, Manual of Clinical Laboratory Methods and Diagnosis (Kimbara, Tokyo, 1975), Chap. 19, pp. 1–12. (in Japanese).

Maeda, K.

K. Maeda, M. Goto, Propagation of Electromagnetic Wave (Iwanami, Tokyo, 1953), p. 29. (in Japanese).

Sato, H.

H. Sato, H. Hayashi, unpublished.

Véjex, A. M.

Way, L. W.

J. E. Dunphy, L. W. Way, Current Surgical Diagnosis and Treatments (Maruzen, Tokyo, 1978).

Yamagishi, A.

A. Yamagishi et al., Oyo Buturi 49, 668 (1980).

J. Opt. Soc. Am. (1)

Oyo Buturi (1)

A. Yamagishi et al., Oyo Buturi 49, 668 (1980).

Other (5)

K. G. Budden, Radio Wave in the Ionosphere (Cambridge U. P., London, 1961), p. 199.

H. Sato, H. Hayashi, unpublished.

K. Maeda, M. Goto, Propagation of Electromagnetic Wave (Iwanami, Tokyo, 1953), p. 29. (in Japanese).

J. E. Dunphy, L. W. Way, Current Surgical Diagnosis and Treatments (Maruzen, Tokyo, 1978).

I. Kanai, M. Kanai, Manual of Clinical Laboratory Methods and Diagnosis (Kimbara, Tokyo, 1975), Chap. 19, pp. 1–12. (in Japanese).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Operational mechanism.

Fig. 2
Fig. 2

Experimental schematic diagram.

Fig. 3
Fig. 3

Two-dimensional display of reflectance variation ΔR.

Fig. 4
Fig. 4

Correlation between ΔR and Hb.

Fig. 5
Fig. 5

Correlation between ΔR and Fe.

Fig. 6
Fig. 6

Correlation between ΔR and Na.

Fig. 7
Fig. 7

Correlation between ΔR and albumin.

Fig. 8
Fig. 8

Correlation between ΔR and α1-globulin.

Fig. 9
Fig. 9

Correlation between ΔR and β-globulin.

Fig. 10
Fig. 10

Correlation between ΔR and γ-globulin.

Fig. 11
Fig. 11

Correlation between ΔR and icteric index.

Fig. 12
Fig. 12

Reflection model for isotropic plasmalike medium.

Fig. 13
Fig. 13

Reflection model for anisotropic plasmalike medium.

Tables (2)

Tables Icon

Table I Calculated Correlations of Various Parameters with ΔR.

Tables Icon

Table II Close-Up of the Correlated Parameters With ΔR

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

I out ( θ i ; λ ) = T 1 ( θ i ; λ ) 2 R 2 ( θ i ; λ ) I in ,
n ˜ 2 = n 2 - i κ ,
[ n ˜ 2 ] = [ n x x n x y n x z n y x n y y n y z n z x n z y n z z ] .
Δ I out = T 1 2 I in [ R 2 ( H ) - R 2 ( 0 ) ] ,
Δ I out / I out ( 0 ) = R 2 ( H ) - R 2 ( 0 ) R 2 ( 0 ) .
Δ R Δ I out / I out ( 0 ) ,
n ˜ 2 2 = 1 - w p 2 ω 2 + ν 2 ( 1 - i ν ω ) ,
n 2 = 1 2 ( 1 - ξ 2 ) 2 + ( ν ξ 2 / ω ) 2 + ( 1 - ξ 2 ) ,
κ = 1 2 ( 1 - ξ 2 ) 2 + ( ν ξ 2 / ω ) 2 - ( 1 - ξ 2 ) ,
ξ 2 = ω p 2 / ( ω 2 + ν 2 ) .
r = - ( n ˜ 2 2 - sin 2 θ i ) 1 / 2 - ( n 1 2 - sin 2 θ i ) 1 / 2 ( n ˜ 2 2 - sin 2 θ i ) 1 / 2 + ( n 1 2 - sin 2 θ i ) 1 / 2 .
R ( 0 ) = r 2 .
α q 4 + β q 3 + γ q 2 + δ q + = 0 ,
α = U ( U 2 - Y 2 ) + X ( n 2 Y 2 - U 2 ) ,
β = 2 l n S X Y 2 ,
γ = - 2 U ( U - X ) ( C 2 U - X ) + 2 Y 2 ( C 2 U - X ) + X Y 2 ( 1 - C 2 n 2 + S 2 l 2 ) ,
δ = - 2 C 2 l n S X Y 2 ,
= ( U - X ) ( C 2 U - X ) 2 - C 2 Y 2 ( C 2 U - X ) - l 2 S 2 C 2 X Y 2 .
q = n ˜ 2 sin θ t ,
tan θ t = sin θ i / q ,
n ˜ 2 2 = q 2 + sin 2 θ i ,
X = ω p 2 / ω 2 ,
Y = ω H / ω ( ω H = e B / m ) ,
Z = ν / ω
C = cos θ i ,
S = sin θ i ,
U = 1 - i Z .
q 2 = C 2 - X / U ,
q 2 = C 2 - X U - Y 2 / ( U - X ) .
n ˜ 2 a = ( q a 2 + sin 2 θ i ) 1 / 2 ,
n ˜ 2 b = ( q b 2 + sin 2 θ i ) 1 / 2 ,
θ t a = tan - 1 ( sin θ i / q a ) ,
θ t b = tan - 1 ( sin θ i / q b ) .
r = ( n 1 - q a ) E y ( a ) + ( n 1 - q b ) E y ( b ) ( n 1 + q a ) E y ( a ) + ( n 1 + q b ) E y ( b ) ,
r = 2 [ n ˜ 2 a E y ( a ) / ρ a + n ˜ 2 b E y ( b ) / ρ b ] ( n 1 + q a ) E y ( a ) + ( n 1 + q b ) E y ( b ) ,
R ( H ) = r 2 + r 2 .

Metrics