Abstract

An echelle grating with 316 grooves/mm and a 63° blaze angle is compared with a 3600-groove/mm holographic grating. The scattered light and resolution of the 10- × 20-cm gratings are photoelectrically evaluated in a 3-m spectrometer optimized to eliminate coma and baffled to minimize instrumental scattered light. Both gratings are ghost-free, but the holographic grating has substantially lower scattered light for test lines near 4000 Å and yields improved stray light rejection within absorption lines. It also exhibits slightly higher resolution. The throughput of the spectrometer with the holographic grating is about 5 times higher than the equivalent combination of spectrometer, echelle grating, and predisperser.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Nubblemeyer, B. Wende, Appl. Opt. 16, 2708 (1977).
    [CrossRef]
  2. D. Dravins, Appl. Opt. 17, 404 (1978).
    [CrossRef] [PubMed]
  3. R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
    [CrossRef]
  4. J. F. Kielkopf, N. F. Allard, J. Phys. B: 13, 709 (1980).
    [CrossRef]
  5. E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
    [CrossRef]
  6. G. R. Harrison, S. W. Thompson, H. Kazukonis, J. R. Connell, J. Opt. Soc. Am. 62, 751 (1972).
    [CrossRef]
  7. G. R. Harrison, Appl. Opt. 12, 2039 (1973).
    [CrossRef] [PubMed]
  8. D. J. Schroeder, “Diffraction Grating Instruments,” in Methods of Experimental Physics: Vol. 12, Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, pp. 463–489.
  9. Handbook of Diffraction Gratings Ruled and Holographic (Jobin-Yvon Optical Systems, Longjumeau, France, undated).
  10. J. Kielkopf, “Multiple Perturber Satellites: Theory and Experiment,” in Spectral Line Shapes, B. Wende, Ed. (de Gruyter, Berlin, 1981), pp. 665–688.
  11. W. G. Fastie, U.S. Patent3,011,391 (1961).
  12. J. Reader, J. Opt. Soc. Am. 59, 1189 (1969).
    [CrossRef]
  13. D. H. Rank, G. Skorinko, D. P. Eastman, G. D. Saksena, T. K. McCubbin, T. A. Wiggins, J. Opt. Soc. Am. 50, 1045 (1960).
    [CrossRef]

1980 (1)

J. F. Kielkopf, N. F. Allard, J. Phys. B: 13, 709 (1980).
[CrossRef]

1978 (1)

1977 (1)

1975 (1)

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

1973 (1)

1972 (2)

G. R. Harrison, S. W. Thompson, H. Kazukonis, J. R. Connell, J. Opt. Soc. Am. 62, 751 (1972).
[CrossRef]

R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
[CrossRef]

1969 (1)

1960 (1)

Allard, N. F.

J. F. Kielkopf, N. F. Allard, J. Phys. B: 13, 709 (1980).
[CrossRef]

Chutley, M. C.

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Connell, J. R.

Dravins, D.

Drummond, D. L.

R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
[CrossRef]

Eastman, D. P.

Fastie, W. G.

W. G. Fastie, U.S. Patent3,011,391 (1961).

Franks, A.

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Gale, B.

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Gallagher, A.

R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
[CrossRef]

Harrison, G. R.

Hedges, R. E. M.

R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
[CrossRef]

Kazukonis, H.

Kielkopf, J.

J. Kielkopf, “Multiple Perturber Satellites: Theory and Experiment,” in Spectral Line Shapes, B. Wende, Ed. (de Gruyter, Berlin, 1981), pp. 665–688.

Kielkopf, J. F.

J. F. Kielkopf, N. F. Allard, J. Phys. B: 13, 709 (1980).
[CrossRef]

McCubbin, T. K.

Nubblemeyer, H.

Palmer, E. W.

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Rank, D. H.

Reader, J.

Saksena, G. D.

Schroeder, D. J.

D. J. Schroeder, “Diffraction Grating Instruments,” in Methods of Experimental Physics: Vol. 12, Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, pp. 463–489.

Skorinko, G.

Thompson, S. W.

Verrill, J. F.

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Wende, B.

Wiggins, T. A.

Appl. Opt. (3)

J. Opt. Soc. Am. (3)

J. Phys. B (1)

J. F. Kielkopf, N. F. Allard, J. Phys. B: 13, 709 (1980).
[CrossRef]

Phys. Rev. A (1)

R. E. M. Hedges, D. L. Drummond, A. Gallagher, Phys. Rev. A: 6, 1519 (1972).
[CrossRef]

Rep. Prog. Phys. (1)

E. W. Palmer, M. C. Chutley, A. Franks, J. F. Verrill, B. Gale, Rep. Prog. Phys. 38, 975 (1975).
[CrossRef]

Other (4)

D. J. Schroeder, “Diffraction Grating Instruments,” in Methods of Experimental Physics: Vol. 12, Astrophysics, N. Carleton, Ed. (Academic, New York, 1974), Part A, pp. 463–489.

Handbook of Diffraction Gratings Ruled and Holographic (Jobin-Yvon Optical Systems, Longjumeau, France, undated).

J. Kielkopf, “Multiple Perturber Satellites: Theory and Experiment,” in Spectral Line Shapes, B. Wende, Ed. (de Gruyter, Berlin, 1981), pp. 665–688.

W. G. Fastie, U.S. Patent3,011,391 (1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Coma of the 3.05-m spectrometer is evaluated as a function of grating angle and displacement from the symmetry point x (mm).

Fig. 2
Fig. 2

Hyperfine structure of the Hg 4358-Å line recorded with the echelle and holographic gratings. Leader marks with −1016-mK component used for part of the analysis of Table I.

Fig. 3
Fig. 3

Commercial Hg–Ar penlamp produces a complex profile for the 2536-Å resonance line. Spectrum marked cooled is from a source operated at threshold voltage and cooled with a blower. Uncooled is from a normally operated lamp. Broadened components of the 2536-Å hyperfine structure that appear in emission in the cooled lamp show in reversal in the uncooled lamp. This blended profile is a sensitive resolution test (see Fig. 4).

Fig. 4
Fig. 4

Comparison of observations of self-reversal in an uncooled penlamp for the 2536-Å Hg line recorded with holographic and echelle gratings. Holographic grating provides more sensitivity in the detection of weak absorption features.

Fig. 5
Fig. 5

Logarithmic plot of the scattered light near the He 3888-Å line from a Phillips lamp recorded for holographic and echelle gratings under otherwise identical circumstances.

Fig. 6
Fig. 6

Logarithmic plot of scattered light and pressure-broadened line wings near the Hg 4358-Å line in an Hg–Ar penlamp observed with holographic and echelle gratings. Holographic grating exhibits an order of magnitude lower scattered light (Fig. 5) and reveals the collisional line wing more clearly than the echelle.

Fig. 7
Fig. 7

Collision broadening of the Cs 3876-Å line in an absorption spectrum recorded with the holographic grating. Absorption cell temperature was 600 K, and the Ar density was 4.9 Å 1018 atoms/cm3 in this example. Central total absorption exhibits a filling in of <1% of the continuum.

Tables (1)

Tables Icon

Table I Instrumental Profiles a

Metrics