Abstract

A compact and highly sensitive helicopter-born fluorescence lidar is described. The single channel system is based on a high power, tunable laser. From an altitude of 70 m, selective detection of the tracer dye rhodamine B of less than 10−10 g/cm3 in natural waters is achieved.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976).
    [CrossRef]
  2. H. H. Kim, Appl. Opt. 12, 1454 (1973).
    [CrossRef] [PubMed]
  3. E. V. Browell, NASA Report TND–8447 (U.S. GPO, Washington, D.C.1977).
  4. F. E. Hoge, R. N. Swift, in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C.1979), paper 3.2.
  5. M. P. F. Bristow, Remote Sensing Environ. 7, 105 (1978).
    [CrossRef]
  6. W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).
  7. H. R. Gordon, Ed., NOAA Technical Memorandum ERL PMEL–18 (U.S. GPO, Washington, D.C., 1980).
  8. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, Appl. Opt. 19, 863 (1980).
    [CrossRef]
  9. F. E. Hoge, R. N. Swift, Appl. Opt. 19, 3269 (1980).
    [CrossRef] [PubMed]
  10. F. E. Hoge, R. N. Swift, E. B. Frederick, Appl. Opt. 19, 871 (1980).
    [CrossRef] [PubMed]
  11. F. E. Hoge, R. N. Swift, Appl. Opt. 20, 1191 (1981).
    [CrossRef] [PubMed]
  12. H. Weidemann, in Optical Aspects of Oceanography, N. J. Jerlov, Ed. (Academic, London, 1974).

1981 (1)

1980 (3)

1978 (1)

M. P. F. Bristow, Remote Sensing Environ. 7, 105 (1978).
[CrossRef]

1976 (1)

W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).

1973 (1)

Bristow, M. P. F.

M. P. F. Bristow, Remote Sensing Environ. 7, 105 (1978).
[CrossRef]

Browell, E. V.

E. V. Browell, NASA Report TND–8447 (U.S. GPO, Washington, D.C.1977).

Buja-Bijunas, L.

Frederick, E. B.

Hoge, F. E.

Jerome, J.

W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).

Kim, H. H.

McNeil, W. R.

W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).

O’Neil, R. A.

Rayner, D. M.

Swift, R. N.

Thompson, K. P. B.

W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).

Weidemann, H.

H. Weidemann, in Optical Aspects of Oceanography, N. J. Jerlov, Ed. (Academic, London, 1974).

Appl. Opt. (5)

Can. Remote Sensing J. (1)

W. R. McNeil, K. P. B. Thompson, J. Jerome, Can. Remote Sensing J. 2, 48 (1976).

Remote Sensing Environ. (1)

M. P. F. Bristow, Remote Sensing Environ. 7, 105 (1978).
[CrossRef]

Other (5)

E. V. Browell, NASA Report TND–8447 (U.S. GPO, Washington, D.C.1977).

F. E. Hoge, R. N. Swift, in Digest of Conference on Laser Engineering and Applications (Optical Society of America, Washington, D.C.1979), paper 3.2.

H. R. Gordon, Ed., NOAA Technical Memorandum ERL PMEL–18 (U.S. GPO, Washington, D.C., 1980).

E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976).
[CrossRef]

H. Weidemann, in Optical Aspects of Oceanography, N. J. Jerlov, Ed. (Academic, London, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical part of fluorescence lidar system: M = mirror; LM = laser mirror; FS = field stop.

Fig. 2
Fig. 2

Electronic signal processing: A/D = analog-to-digital converter; BS = beam splitter; D/A = digital-to-analog converter; D1 = pyroelectric detector; D2 = PIN-diode; PM = photomultiplier; M = mirror.

Fig. 3
Fig. 3

Fluorescence lidar installed in helicopter (Bell 206 L). On the left, dye laser (above) and telescope with folding mirror (below); on the right, supply units for the laser. System weighs ~400 kg; dimensions of the laser/telescope are 40 × 100 × 150 cm.

Fig. 4
Fig. 4

Concentration profile of artificial plume of RhB measured by the fluorescence lidar. Height of measurement 70 m. The detection limit for Rh B is ~10−10 g/cm3. Measuring time for this profile was about 300 sec.

Tables (1)

Tables Icon

Table I Operational Parameters of the Fluorescence Lidar RhB Detection

Metrics