Abstract

Generalized composite nonthermal line profiles are calculated for the thermospheric nighttime emission from O(1S) metastable atoms based on an extension to the simple relaxation model of Hays and Walker. It is shown that the Dynamics Explorer Fabry-Perot interferometer will enable accurate values to be obtained for the branching ratio of the O(1S) production reaction and for the excitation exchange collision frequency.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Rogers, M. A. Biondi, Phys. Rev. 134, A1215 (1964).
    [CrossRef]
  2. T. R. Connor, M. A. Biondi, Phys. Rev. 140, A778 (1965).
    [CrossRef]
  3. P. B. Hays, J. C. G. Walker, Planet. Space Sci. 14, 1331 (1966).
    [CrossRef]
  4. E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
    [CrossRef]
  5. E. C. Whipple, J. Chem. Phys. 60, 1345 (1974).
    [CrossRef]
  6. E. C. Whipple, Phys. Fluids 15, 988 (1972).
    [CrossRef]
  7. G. Hernandez, Planet. Space Sci. 19, 467 (1971).
    [CrossRef]
  8. P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).
  9. D. R. Bates, E. C. Zipf, Planet. Space Sci. 28, 1081 (1980).
    [CrossRef]
  10. N. F. Mott, H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965).
  11. G. J. Hernandez, Appl. Opt. 5, 1745 (1966).
    [CrossRef] [PubMed]
  12. P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
    [CrossRef]
  13. A. E. Hedin et al., J. Geophys. Res. 82, 2139 (1977).
    [CrossRef]
  14. A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
    [CrossRef]

1981 (1)

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).

1980 (1)

D. R. Bates, E. C. Zipf, Planet. Space Sci. 28, 1081 (1980).
[CrossRef]

1977 (2)

A. E. Hedin et al., J. Geophys. Res. 82, 2139 (1977).
[CrossRef]

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

1975 (1)

E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
[CrossRef]

1974 (1)

E. C. Whipple, J. Chem. Phys. 60, 1345 (1974).
[CrossRef]

1973 (1)

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

1972 (1)

E. C. Whipple, Phys. Fluids 15, 988 (1972).
[CrossRef]

1971 (1)

G. Hernandez, Planet. Space Sci. 19, 467 (1971).
[CrossRef]

1966 (2)

G. J. Hernandez, Appl. Opt. 5, 1745 (1966).
[CrossRef] [PubMed]

P. B. Hays, J. C. G. Walker, Planet. Space Sci. 14, 1331 (1966).
[CrossRef]

1965 (1)

T. R. Connor, M. A. Biondi, Phys. Rev. 140, A778 (1965).
[CrossRef]

1964 (1)

W. A. Rogers, M. A. Biondi, Phys. Rev. 134, A1215 (1964).
[CrossRef]

Bates, D. R.

D. R. Bates, E. C. Zipf, Planet. Space Sci. 28, 1081 (1980).
[CrossRef]

Biondi, M. A.

T. R. Connor, M. A. Biondi, Phys. Rev. 140, A778 (1965).
[CrossRef]

W. A. Rogers, M. A. Biondi, Phys. Rev. 134, A1215 (1964).
[CrossRef]

Brinton, H. C.

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Carignan, G. R.

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

Connor, T. R.

T. R. Connor, M. A. Biondi, Phys. Rev. 140, A778 (1965).
[CrossRef]

Hays, P. B.

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

P. B. Hays, J. C. G. Walker, Planet. Space Sci. 14, 1331 (1966).
[CrossRef]

Hedin, A. E.

A. E. Hedin et al., J. Geophys. Res. 82, 2139 (1977).
[CrossRef]

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Hernandez, G.

G. Hernandez, Planet. Space Sci. 19, 467 (1971).
[CrossRef]

Hernandez, G. J.

Kennedy, B. C.

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

Killeen, T. L.

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).

Love, C. H.

E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
[CrossRef]

Massey, H. S. W.

N. F. Mott, H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965).

Mayr, H. G.

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Mott, N. F.

N. F. Mott, H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965).

Newton, G. P.

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Reber, C. A.

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Rogers, W. A.

W. A. Rogers, M. A. Biondi, Phys. Rev. 134, A1215 (1964).
[CrossRef]

Shepherd, G. G.

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

Spencer, N. W.

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

VanZandt, T. E.

E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
[CrossRef]

Walker, J. C. G.

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

P. B. Hays, J. C. G. Walker, Planet. Space Sci. 14, 1331 (1966).
[CrossRef]

Whipple, E. C.

E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
[CrossRef]

E. C. Whipple, J. Chem. Phys. 60, 1345 (1974).
[CrossRef]

E. C. Whipple, Phys. Fluids 15, 988 (1972).
[CrossRef]

Zipf, E. C.

D. R. Bates, E. C. Zipf, Planet. Space Sci. 28, 1081 (1980).
[CrossRef]

Appl. Opt. (1)

J. Chem. Phys. (2)

E. C. Whipple, T. E. VanZandt, C. H. Love, J. Chem. Phys. 62, 3024 (1975).
[CrossRef]

E. C. Whipple, J. Chem. Phys. 60, 1345 (1974).
[CrossRef]

J. Geophys. Res. (2)

A. E. Hedin et al., J. Geophys. Res. 82, 2139 (1977).
[CrossRef]

A. E. Hedin, C. A. Reber, G. P. Newton, N. W. Spencer, H. C. Brinton, H. G. Mayr, J. Geophys. Res. 82, 2148 (1977).
[CrossRef]

Phys. Fluids (1)

E. C. Whipple, Phys. Fluids 15, 988 (1972).
[CrossRef]

Phys. Rev. (2)

W. A. Rogers, M. A. Biondi, Phys. Rev. 134, A1215 (1964).
[CrossRef]

T. R. Connor, M. A. Biondi, Phys. Rev. 140, A778 (1965).
[CrossRef]

Planet. Space Sci. (3)

P. B. Hays, J. C. G. Walker, Planet. Space Sci. 14, 1331 (1966).
[CrossRef]

D. R. Bates, E. C. Zipf, Planet. Space Sci. 28, 1081 (1980).
[CrossRef]

G. Hernandez, Planet. Space Sci. 19, 467 (1971).
[CrossRef]

Radio Sci. (1)

P. B. Hays, G. R. Carignan, B. C. Kennedy, G. G. Shepherd, J. C. G. Walker, Radio Sci. 8, 369 (1973).
[CrossRef]

Space Sci. Instrum. (1)

P. B. Hays, T. L. Killeen, B. C. Kennedy, Space Sci. Instrum. 5, 345 (1981).

Other (1)

N. F. Mott, H. S. W. Massey, The Theory of Atomic Collisions (Oxford U.P., London, 1965).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Composite nonthermal line profiles for O(1S) calculated using an idealized F.P. instrument function with no thermalizing collisions. The branching ratio for the production reaction is 0.0, 0.2, 0.5, and 1.0 for curves a, b, c, and d, respectively.

Fig. 2
Fig. 2

Composite nonthermal line profiles for O(1S) calculated using an idealized F.P. instrument function. The branching ratio (S) for the production reaction is 0.2; seven curves are shown corresponding to different values of the collision frequency (η2) for channel 2 O(1S) atoms; units are sec−1.

Fig. 3
Fig. 3

Orthographic projection of the detected signal modulation over one free spectral range for channel 2 O(1S) atoms as a function of b, the ratio of the maximum observed Doppler shift to the FSR. ν0 is the line centroid wave number and ΔνFSR is the free spectral range in wave number units.

Fig. 4
Fig. 4

Orthographic projection of the detected signal modulation over one FSR for O(1S) atoms as a function of b, the ratio of the maximum observed Doppler shift to the FSR. Branching ratio S = 0.2; collision frequency for channel 2 O(1S) atoms is set at 0.5 sec−1. ν0 is the line centroid wave number, ΔνFSR is the Free Spectral Range in wave number units.

Fig. 5
Fig. 5

Simulated spectrograms for the 12-channel Dynamics Explorer F.P. viewing the nighttime thermospheric O(1S) emission. See text for parameters used in simulations.

Tables (1)

Tables Icon

Table I Dissociative Recombination Line Profile Analysisa

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

O 2 + ( X 2 Π g ) + e O ( S 1 ) + O ( D 1 ) ,
O 2 + ( X 2 Π g ) + e O ( S 1 ) + O ( P 3 ) .
I ( ν ) = [ S β 1 + ( 1 - S ) β 2 ] 1 π 1 / 2 exp - ( ν - ν 0 α 0 ) 2 + S ( 1 - β 1 ) 1 4 α O 2 ( k T E 1 ) 1 / 2 { erfc [ ν - ν 0 α O 2 - ( E 1 k T ) 1 / 2 ] - erfc [ ν - ν 0 α O 2 + ( E 1 k T ) 1 / 2 ] } + ( 1 - S ) ( 1 - β 2 ) 1 4 α O 2 ( k T E 1 ) 1 / 2 { erfc [ ν - ν 0 α O 2 - ( E 2 k T ) 1 / 2 ] - erfc [ ν - ν 0 α O 2 + ( E 2 k T ) 1 / 2 ] } .
α O = ν 0 c ( 2 k T O m O ) 1 / 2 ,     α O 2 = ν 0 c ( 2 k T O 2 m O 2 + ) 1 / 2 .
ψ ( ν - ν F ) = A 0 + n = 1 A n cos ( 2 π n ( ν - ν F ) Δ ν FSR ) + B n sin ( 2 π n ( ν - ν F ) Δ ν FSR ) ,
I c = R 0 ψ ( ν - ν F ) I ( ν - ν 0 ) d ν
= R ( 2 π ) 1 / 2 0 - + { I ˜ ( w ) exp [ - i w ( ν - ν 0 ) ] d w } · ψ ( ν - ν F ) d ν ,
I ˜ ( w ) = [ S β 1 + ( 1 + S ) β 2 ] 1 ( 2 π ) 1 / 2 exp ( - α O 2 w 2 4 ) + S ( 1 - β 1 ) 1 ( 2 π ) 1 / 2 α O 2 ( k T E 1 ) 1 / 2 sin ( α O 2 ( E 1 k T ) 1 / 2 w ) w × exp ( - α O 2 2 w 2 4 ) + ( 1 - S ) ( 1 - β 2 ) 1 ( 2 π ) 1 / 2 α O 2 ( k T E 2 ) 1 / 2 sin ( α O 2 ( E 2 k T ) 1 / 2 w ) w × exp ( - α O 2 2 w 2 4 ) ,
I c = R ( 2 π ) 1 / 2 n = 1 { A n I ˜ ( 2 π n Δ ν FSR ) cos [ 2 π n Δ ν FSR ( ν F - ν 0 ) ] + B n I ˜ ( 2 π n Δ ν FSR ) sin [ 2 π n Δ ν FSR ( ν F - ν 0 ) ] } .
b = 2 d ν 0 ( c V 2 - 1 ) V 2 ν 0 Δ ν FSR c ,

Metrics