Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. R. Peck, J. Opt. Soc. Am. 52, 253 (1962).
    [CrossRef]
  2. R. F. Chang, D. G. Currie, C. O. Alley, M. E. Pittman, J. Opt. Soc. Am. 61, 431 (1971).
    [CrossRef]
  3. E. Collett, Am. J. Phys. 39, 1483 (1971).
    [CrossRef]
  4. B. J. Howell, Appl. Opt. 18, 809 (1979).
    [CrossRef] [PubMed]
  5. N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).
  6. Unconventional natural ordering of the Pauli spin matrices is employed to facilitate the use of Ref. 2 instead of the physically more meaningful ordering [for example, see W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961)].
    [CrossRef]
  7. K. N. Chandler, J. Opt. Soc. Am. 50, 203 (1960).
    [CrossRef]
  8. R. W. Schmieder, J. Opt. Soc. Am. 59, 297 (1969).
    [CrossRef]
  9. E. Collett, Am. J. Phys. 39, 517 (1971).
    [CrossRef]
  10. W. A. Shurcliff, Polarized Light (Harvard U.P., Cambridge, 1962).
  11. R. C. Jones, J. Opt. Soc. Am. 37, 107 (1947).
    [CrossRef]

1979 (1)

1977 (1)

N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).

1971 (3)

R. F. Chang, D. G. Currie, C. O. Alley, M. E. Pittman, J. Opt. Soc. Am. 61, 431 (1971).
[CrossRef]

E. Collett, Am. J. Phys. 39, 1483 (1971).
[CrossRef]

E. Collett, Am. J. Phys. 39, 517 (1971).
[CrossRef]

1969 (1)

1962 (1)

1961 (1)

Unconventional natural ordering of the Pauli spin matrices is employed to facilitate the use of Ref. 2 instead of the physically more meaningful ordering [for example, see W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961)].
[CrossRef]

1960 (1)

1947 (1)

Alley, C. O.

Chandler, K. N.

Chang, R. F.

Collett, E.

E. Collett, Am. J. Phys. 39, 1483 (1971).
[CrossRef]

E. Collett, Am. J. Phys. 39, 517 (1971).
[CrossRef]

Currie, D. G.

Gamo, N.

N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).

Howell, B. J.

Joganna Phan, J.

N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).

Jones, R. C.

Majumdor, A. K.

N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).

McMaster, W. H.

Unconventional natural ordering of the Pauli spin matrices is employed to facilitate the use of Ref. 2 instead of the physically more meaningful ordering [for example, see W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961)].
[CrossRef]

Peck, E. R.

Pittman, M. E.

Schmieder, R. W.

Shurcliff, W. A.

W. A. Shurcliff, Polarized Light (Harvard U.P., Cambridge, 1962).

Am. J. Phys. (2)

E. Collett, Am. J. Phys. 39, 1483 (1971).
[CrossRef]

E. Collett, Am. J. Phys. 39, 517 (1971).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. (5)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. Gamo, J. Joganna Phan, A. K. Majumdor, Proc. Soc. Photo-Opt. Instrum. Eng. 125, 30 (1977).

Rev. Mod. Phys. (1)

Unconventional natural ordering of the Pauli spin matrices is employed to facilitate the use of Ref. 2 instead of the physically more meaningful ordering [for example, see W. H. McMaster, Rev. Mod. Phys. 33, 8 (1961)].
[CrossRef]

Other (1)

W. A. Shurcliff, Polarized Light (Harvard U.P., Cambridge, 1962).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (9)

Equations on this page are rendered with MathJax. Learn more.

v n = C n U
C n = ξ σ 0 + f n 3 2 η σ 1 + g n ζ σ 2 + h n 1 2 η σ 3
σ 0 = ( 1 0 0 1 ) , σ 1 = ( 0 1 1 0 ) , σ 2 = ( 0 - i i 0 ) , and σ 3 = ( 1 0 0 - 1 )
ξ = 1 16 ( r s - r p ) [ ( r s + r p ) 2 + 8 r s r p ] , η = 2 16 ( r s + r p ) 3 , ζ = - i 3 16 ( r s + r p ) 2 ( r s - r p ) ,
6 ξ ( 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) .
k ( 1 0 0 0 0 1 0 0 0 0 - 1 0 0 0 0 - 1 ) ,
A : ( I A M A C A S A ) = 1 2 ( 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 ) ( m 1 0 0 0 0 m 2 0 0 0 0 m 3 0 0 0 0 m 4 ) ( 1 0 1 0 ) ,
B : ( I B M B C B S B ) = 1 2 ( 1 0 - 1 0 0 0 0 0 - 1 0 1 0 0 0 0 0 ) ( m 1 0 0 0 0 m 2 0 0 0 0 m 3 0 0 0 0 m 4 ) ( 1 0 1 0 ) ,
C : ( I C M C C C S C ) = 1 2 ( 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 ) ( 1 0 0 0 0 1 0 0 0 0 0 1 0 0 - 1 0 ) ( m 1 0 0 0 0 m 2 0 0 0 0 m 3 0 0 0 0 m 4 ) ( 1 0 0 1 ) ,

Metrics