Abstract

Resonance detection and quantification of atomic absorption have been demonstrated for Na, Cu, and Li using an optogalvanic effect. In this experiment, a pulsed dye laser tuned to an absorption transition of the analyte atom (i.e., the element to be determined) was directed through the analyte atomic vapor produced in a flame into a commercial hollow cathode lamp containing the element of interest. The optogalvanic signal was monitored and related to the analyte concentration in the flame. Detection limits were obtained for Na, Cu, and Li, the behavior of the sodium hollow cathode lamp was characterized, and future applications are suggested.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
    [CrossRef]
  2. A good review of conventional resonance detection may be found in J. V. Sullivan, A. Walsh, Appl. Opt. 7, 1271 (1968).
    [CrossRef] [PubMed]
  3. J. V. Sullivan, A. Walsh, Spectrochim. Acta 22, 1843 (1966).
    [CrossRef]
  4. J. A. Bowman, Anal. Chim. Acta 37, 465 (1967).
    [CrossRef] [PubMed]
  5. B. S. Rawling, J. V. Sullivan, Trans. Inst. Min. Met. 76, C238 (1967).
  6. P. L. Boar, J. V. Sullivan, Fuel 46, 230 (1967).
  7. E. F. Zalewski, R. A. Keller, R. Engelman, J. Chem. Phys. 70, 1015 (1979).
    [CrossRef]
  8. R. A. Keller, E. F. Zalewski, Appl. Opt. 19, 3301 (1980).
    [CrossRef] [PubMed]
  9. N. C. Peterson, M. J. Kurylo, W. Braun, A. M. Bass, R. A. Keller, J. Opt. Soc. Am. 61, 746 (1971).
    [CrossRef]
  10. E. F. Zalewski, R. A. Keller, C. T. Apel, Appl. Opt. 20, 1584 (1981).
    [CrossRef] [PubMed]
  11. B. W. Smith, M. L. Parson, J. Chem. Educ. 50, 679 (1973).
    [CrossRef]
  12. W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1, NSRDS-NBS4 (U.S. GPO, Washington, D.C., 1966), p. 130.
  13. K. C. Symth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
    [CrossRef]
  14. R. A. Keller, R. Engleman, B. A. Palmer, Appl. Opt. 19, 836 (1980).
    [CrossRef] [PubMed]
  15. Perkin-Elmer Corporation Manuals: “Analytical Methods for Atomic Absorption Spectrophotometry” (1976) and “Techniques and Applications,” Norwalk, Conn.
  16. R. B. Green, G. J. Havrilla, T. O. Trask, Appl. Spectrosc. 34, 561 (1980).
    [CrossRef]
  17. G. J. Beneen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
    [CrossRef]

1981 (2)

1980 (3)

1979 (1)

E. F. Zalewski, R. A. Keller, R. Engelman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

1978 (1)

K. C. Symth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

1976 (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

1973 (1)

B. W. Smith, M. L. Parson, J. Chem. Educ. 50, 679 (1973).
[CrossRef]

1971 (1)

1968 (1)

1967 (3)

J. A. Bowman, Anal. Chim. Acta 37, 465 (1967).
[CrossRef] [PubMed]

B. S. Rawling, J. V. Sullivan, Trans. Inst. Min. Met. 76, C238 (1967).

P. L. Boar, J. V. Sullivan, Fuel 46, 230 (1967).

1966 (1)

J. V. Sullivan, A. Walsh, Spectrochim. Acta 22, 1843 (1966).
[CrossRef]

Apel, C. T.

Bass, A. M.

Beneen, G. J.

G. J. Beneen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Boar, P. L.

P. L. Boar, J. V. Sullivan, Fuel 46, 230 (1967).

Bowman, J. A.

J. A. Bowman, Anal. Chim. Acta 37, 465 (1967).
[CrossRef] [PubMed]

Braun, W.

Engelman, R.

E. F. Zalewski, R. A. Keller, R. Engelman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

Engleman, R.

Glennon, B. M.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1, NSRDS-NBS4 (U.S. GPO, Washington, D.C., 1966), p. 130.

Green, R. B.

R. B. Green, G. J. Havrilla, T. O. Trask, Appl. Spectrosc. 34, 561 (1980).
[CrossRef]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

Havrilla, G. J.

Keller, R. A.

Kurylo, M. J.

Luther, G. G.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

Palmer, B. A.

Parson, M. L.

B. W. Smith, M. L. Parson, J. Chem. Educ. 50, 679 (1973).
[CrossRef]

Peterson, N. C.

Piepmeier, E. H.

G. J. Beneen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Rawling, B. S.

B. S. Rawling, J. V. Sullivan, Trans. Inst. Min. Met. 76, C238 (1967).

Schenck, P. K.

K. C. Symth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

Smith, B. W.

B. W. Smith, M. L. Parson, J. Chem. Educ. 50, 679 (1973).
[CrossRef]

Smith, M. W.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1, NSRDS-NBS4 (U.S. GPO, Washington, D.C., 1966), p. 130.

Sullivan, J. V.

A good review of conventional resonance detection may be found in J. V. Sullivan, A. Walsh, Appl. Opt. 7, 1271 (1968).
[CrossRef] [PubMed]

B. S. Rawling, J. V. Sullivan, Trans. Inst. Min. Met. 76, C238 (1967).

P. L. Boar, J. V. Sullivan, Fuel 46, 230 (1967).

J. V. Sullivan, A. Walsh, Spectrochim. Acta 22, 1843 (1966).
[CrossRef]

Symth, K. C.

K. C. Symth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Trask, T. O.

Travis, J. C.

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

Walsh, A.

Wiese, W. L.

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1, NSRDS-NBS4 (U.S. GPO, Washington, D.C., 1966), p. 130.

Zalewski, E. F.

Anal. Chem. (1)

G. J. Beneen, E. H. Piepmeier, Anal. Chem. 53, 239 (1981).
[CrossRef]

Anal. Chim. Acta (1)

J. A. Bowman, Anal. Chim. Acta 37, 465 (1967).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

R. B. Green, R. A. Keller, G. G. Luther, P. K. Schenck, J. C. Travis, Appl. Phys. Lett. 29, 727 (1976).
[CrossRef]

Appl. Spectrosc. (1)

Chem. Phys. Lett. (1)

K. C. Symth, P. K. Schenck, Chem. Phys. Lett. 55, 466 (1978).
[CrossRef]

Fuel (1)

P. L. Boar, J. V. Sullivan, Fuel 46, 230 (1967).

J. Chem. Educ. (1)

B. W. Smith, M. L. Parson, J. Chem. Educ. 50, 679 (1973).
[CrossRef]

J. Chem. Phys. (1)

E. F. Zalewski, R. A. Keller, R. Engelman, J. Chem. Phys. 70, 1015 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

Spectrochim. Acta (1)

J. V. Sullivan, A. Walsh, Spectrochim. Acta 22, 1843 (1966).
[CrossRef]

Trans. Inst. Min. Met. (1)

B. S. Rawling, J. V. Sullivan, Trans. Inst. Min. Met. 76, C238 (1967).

Other (2)

W. L. Wiese, M. W. Smith, B. M. Glennon, Atomic Transition Probabilities, Vol. 1, NSRDS-NBS4 (U.S. GPO, Washington, D.C., 1966), p. 130.

Perkin-Elmer Corporation Manuals: “Analytical Methods for Atomic Absorption Spectrophotometry” (1976) and “Techniques and Applications,” Norwalk, Conn.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus for OG resonance detection of pulsed dye laser atomic absorption: R = 25kΩ; C = 1 μF; SCR, strip chart recorder.

Fig. 2
Fig. 2

Dependence of the OG signal on incident laser power. HCL current: Cu (324.75 nm), 9 mA; Na (589.00 nm), 5 mA; Li (670.78 nm), 8 mA; In (303.94 nm), 3 mA.

Fig. 3
Fig. 3

Dependence of the OG signal on the sodium HCL current Laser power was 0.3 mW.

Fig. 4
Fig. 4

Analytical calibration curves for OG resonance detection of copper and lithium atomic absorption. HCL current: Cu, 9 mA; Li, 8 mA. Laser power: Cu, 1.9 mW; Li, 1.4 mW.

Fig. 5
Fig. 5

Analytical calibration curves for OG resonance detection of sodium atomic absorption at several incident laser powers: (a) 0.30 mW; (b) 0.23 mW; (c) 0.16 mW.

Tables (1)

Tables Icon

Table I Comparison of Parameters for Atomic Absorption Spectrometry a

Metrics