Abstract

Low-background tests of a 1 × 32 Si:Bi charge-injection-device (CID) IR detector array were carried out to evaluate its feasibility for space-based astronomical observations. Optimum performance was obtained at a temperature of 11 K. The device showed a peak responsivity of 4.4 A/W, an average noise level of ~670 electrons, and a minimum noise equivalent power of 3×10-17W/Hz for 1-sec integration time. This sensitivity compares well with that of discrete extrinsic silicon photoconductors. The measured sensitivity, plus the apparent absence of anomalous effects, make extrinsic silicon CID arrays very promising for astronomical applications.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Ando, “Assessment Study of Infrared Detector Arrays for Low-Background Astronomical Research,” NASA CR-152,169 (Aug.1978).
  2. F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).
  3. N. W. Boggess et al., “Infrared Receivers for Low Background Astronomy, Incoherent Detectors and Coherent Devices from One Micrometer to One Millimeter,” NASA TM-78598 (June1979).
  4. Anon., Shuttle Infrared Telescope Facility, Focal Plane Instruments and Requirements Science Team, Final Report, Ames Research Center (1979).
  5. P. R. Bratt, in Semiconductors and Semimetals, Vol. 12, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1977), p. 39.
    [CrossRef]
  6. A. F. Milton, in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer, Berlin, 1977), p. 197.
  7. J. C. Kim, IEEE Trans. Electron Devices ED-25, 232 (1978).
    [CrossRef]
  8. M. H. White et al., IEEE J. Solid-State Circuits SC-9, 1 (1974).
    [CrossRef]
  9. R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3541 (1978).
    [CrossRef] [PubMed]
  10. E. T. Young, F. J. Low, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 184 (1979).
  11. W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
    [CrossRef]
  12. C. M. Parry, Aerojet ElectroSystems Co.; private communication.

1980 (1)

W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
[CrossRef]

1979 (3)

E. T. Young, F. J. Low, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 184 (1979).

F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).

N. W. Boggess et al., “Infrared Receivers for Low Background Astronomy, Incoherent Detectors and Coherent Devices from One Micrometer to One Millimeter,” NASA TM-78598 (June1979).

1978 (3)

J. C. Kim, IEEE Trans. Electron Devices ED-25, 232 (1978).
[CrossRef]

K. J. Ando, “Assessment Study of Infrared Detector Arrays for Low-Background Astronomical Research,” NASA CR-152,169 (Aug.1978).

R. H. Meier, A. B. Dauger, Appl. Opt. 17, 3541 (1978).
[CrossRef] [PubMed]

1974 (1)

M. H. White et al., IEEE J. Solid-State Circuits SC-9, 1 (1974).
[CrossRef]

Ando, K. J.

K. J. Ando, “Assessment Study of Infrared Detector Arrays for Low-Background Astronomical Research,” NASA CR-152,169 (Aug.1978).

Boggess, N. W.

N. W. Boggess et al., “Infrared Receivers for Low Background Astronomy, Incoherent Detectors and Coherent Devices from One Micrometer to One Millimeter,” NASA TM-78598 (June1979).

Bratt, P. R.

P. R. Bratt, in Semiconductors and Semimetals, Vol. 12, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1977), p. 39.
[CrossRef]

Dauger, A. B.

Kim, J. C.

J. C. Kim, IEEE Trans. Electron Devices ED-25, 232 (1978).
[CrossRef]

Low, F. J.

E. T. Young, F. J. Low, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 184 (1979).

Luinge, W.

W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
[CrossRef]

Meier, R. H.

Miller, J. H.

F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).

Milton, A. F.

A. F. Milton, in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer, Berlin, 1977), p. 197.

Parry, C. M.

C. M. Parry, Aerojet ElectroSystems Co.; private communication.

van Duinen, R. J.

W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
[CrossRef]

White, M. H.

M. H. White et al., IEEE J. Solid-State Circuits SC-9, 1 (1974).
[CrossRef]

Wildeman, K. J.

W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
[CrossRef]

Witteborn, F. C.

F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).

Young, E. T.

E. T. Young, F. J. Low, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 184 (1979).

Young, L. S.

F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).

Appl. Opt. (1)

IEEE J. Solid-State Circuits (1)

M. H. White et al., IEEE J. Solid-State Circuits SC-9, 1 (1974).
[CrossRef]

IEEE Trans. Electron Devices (1)

J. C. Kim, IEEE Trans. Electron Devices ED-25, 232 (1978).
[CrossRef]

Infrared Phys. (1)

W. Luinge, K. J. Wildeman, R. J. van Duinen, Infrared Phys. 20, 39 (1980).
[CrossRef]

NASA CR-152,169 (1)

K. J. Ando, “Assessment Study of Infrared Detector Arrays for Low-Background Astronomical Research,” NASA CR-152,169 (Aug.1978).

NASA TM-78598 (1)

N. W. Boggess et al., “Infrared Receivers for Low Background Astronomy, Incoherent Detectors and Coherent Devices from One Micrometer to One Millimeter,” NASA TM-78598 (June1979).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

F. C. Witteborn, L. S. Young, J. H. Miller, Proc. Soc. Photo-Opt. Instrum. Eng. 183, 24 (1979).

E. T. Young, F. J. Low, Proc. Soc. Photo-Opt. Instrum. Eng. 172, 184 (1979).

Other (4)

C. M. Parry, Aerojet ElectroSystems Co.; private communication.

Anon., Shuttle Infrared Telescope Facility, Focal Plane Instruments and Requirements Science Team, Final Report, Ames Research Center (1979).

P. R. Bratt, in Semiconductors and Semimetals, Vol. 12, R. K. Willardson, A. C. Beer, Eds. (Academic, New York, 1977), p. 39.
[CrossRef]

A. F. Milton, in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer, Berlin, 1977), p. 197.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Noise equivalent power limitations from astrophysical backgrounds (Ref. 3, p. 14).

Fig. 2
Fig. 2

Si:Bi accumulation-mode CID unit cell.

Fig. 3
Fig. 3

Dewar configuration.

Fig. 4
Fig. 4

Electronics block diagram.

Fig. 5
Fig. 5

(a) Responsivity variation; (b) Noise variation; (c) NEP variation; (d) detective quantum efficiency variation, computed for a background of 1.8 × 106 ph/sec.

Fig. 6
Fig. 6

Output waveforms as functions of detector temperature. Radiation source is a chopped 638 K blackbody.

Fig. 7
Fig. 7

Temperature dependence of signal.

Fig. 8
Fig. 8

Sensitivity optimization map.

Fig. 9
Fig. 9

Sensitivity variations with guard ring potential.

Fig. 10
Fig. 10

Influence of background on noise spectra.

Fig. 11
Fig. 11

Noise dependence on temperature.

Fig. 12
Fig. 12

Intercomparison of noise and responsivity.

Fig. 13
Fig. 13

Correlation of quantum efficiencies.

Fig. 14
Fig. 14

Detector frequency response; 300 K background noise spectrum from Fig. 10 plotted for comparison

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F P = 1.03 × 10 - 12 [ exp ( 1099 / T B B ) - 1 ] - 1 ( W ) ,
R N = V ( T B B ) - V ( 300 K ) g t i [ F N ( T B B ) - F N ( 300 K ) ]
R P = R N λ C in h c ,
R P = 0.808 λ Γ η R ( A / W ) ,
V n = { 0 [ v n ( f ) sin ( π f / f s ) ( π f / f s ) ] 2 d f } 1 / 2 .
n ¯ = ( C in V n ) / g e ,
NEP = e n ¯ R P ( 2 t i ) 1 / 2 ,
η D = ( NEP ideal NEP ) 2 = 2 F P ( h c λ ) NEP 2 .
τ d r = ( 0 t η R μ τ L e ) 1 F N = N Bi F N ,

Metrics