Abstract

The prism coupling technique has been used to measure the refractive index and thickness of plasma silicon oxide films deposited on garnet substrates. The film thickness is also measured with a mechanical stylus (Talystep) for comparison. A linearly polarized He–Ne laser at 632.8-nm wavelength or a He–Cd laser at 441.6-nm wavelength is used as the light source in the prism coupler. The use of the He–Ne laser is demonstrated to result in a fluctuation in the detector output due to light interference in the substrate. The He–Cd laser is shown to be superior because the substrate is sufficiently absorbing that interference is eliminated. It also permits thickness measurements on thinner films. The agreement between thickness measurements by the prism coupler and the mechanical stylus is within ±0.015 μm for films of 0.4 μm or thicker and ±0.010 μm for thinner films. The error in thickness measurement caused by an error in refractive index assumed or in determining the coupling angles for films thinner than 0.30 μm is also estimated.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).
  2. P. K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970).
    [CrossRef]
  3. P. K. Tien, Appl. Opt. 10, 2395 (1971).
    [CrossRef] [PubMed]
  4. R. Ulrich, R. Torge, Appl. Opt. 12, 2901 (1973).
    [CrossRef] [PubMed]
  5. D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.
  6. R. T. Kersten, Opt. Acta 22, 503 (1975).
    [CrossRef]
  7. P. A. Barnes, D. P. Schinke, Appl. Phys. Lett. 30, 26 (1977).
    [CrossRef]
  8. M. Olivier, J. C. Peuzin, Appl. Phys. Lett. 32, 386 (1978).
    [CrossRef]
  9. A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
    [CrossRef]
  10. J. R. Hollahan, J. Electrochem. Soc. 126, 930 (1979).
    [CrossRef]
  11. S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 62.
  13. T. W. Hou, unpublished results.
  14. T. J. Nelson et al., Bell Syst. Tech. J. 59, 229 (1980).

1980 (1)

T. J. Nelson et al., Bell Syst. Tech. J. 59, 229 (1980).

1979 (3)

A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
[CrossRef]

J. R. Hollahan, J. Electrochem. Soc. 126, 930 (1979).
[CrossRef]

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

1978 (1)

M. Olivier, J. C. Peuzin, Appl. Phys. Lett. 32, 386 (1978).
[CrossRef]

1977 (1)

P. A. Barnes, D. P. Schinke, Appl. Phys. Lett. 30, 26 (1977).
[CrossRef]

1975 (1)

R. T. Kersten, Opt. Acta 22, 503 (1975).
[CrossRef]

1973 (1)

1971 (1)

1970 (1)

1969 (1)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).

Adams, A. C.

A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
[CrossRef]

Barnes, P. A.

P. A. Barnes, D. P. Schinke, Appl. Phys. Lett. 30, 26 (1977).
[CrossRef]

Biolsi, W. A.

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Blank, S. L.

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 62.

Capio, C. D.

A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
[CrossRef]

Hollahan, J. R.

J. R. Hollahan, J. Electrochem. Soc. 126, 930 (1979).
[CrossRef]

Hou, T. W.

T. W. Hou, unpublished results.

Karr, M. A.

D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.

Kersten, R. T.

R. T. Kersten, Opt. Acta 22, 503 (1975).
[CrossRef]

LeGraw, R. C.

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Luther, L. C.

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Mackenzie, D. R.

D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.

Martin, R. J.

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).

Nelson, T. J.

T. J. Nelson et al., Bell Syst. Tech. J. 59, 229 (1980).

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Olivier, M.

M. Olivier, J. C. Peuzin, Appl. Phys. Lett. 32, 386 (1978).
[CrossRef]

Peuzin, J. C.

M. Olivier, J. C. Peuzin, Appl. Phys. Lett. 32, 386 (1978).
[CrossRef]

Schinke, D. P.

A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
[CrossRef]

P. A. Barnes, D. P. Schinke, Appl. Phys. Lett. 30, 26 (1977).
[CrossRef]

D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.

Smith, R. G.

D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.

Tien, P. K.

Torge, R.

Ulrich, R.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 62.

Wolfe, R.

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (3)

P. K. Tien, R. Ulrich, R. J. Martin, Appl. Phys. Lett. 14, 291 (1969).

P. A. Barnes, D. P. Schinke, Appl. Phys. Lett. 30, 26 (1977).
[CrossRef]

M. Olivier, J. C. Peuzin, Appl. Phys. Lett. 32, 386 (1978).
[CrossRef]

Bell Syst. Tech. J. (1)

T. J. Nelson et al., Bell Syst. Tech. J. 59, 229 (1980).

J. Appl. Phys. (1)

S. L. Blank, R. Wolfe, L. C. Luther, R. C. LeGraw, T. J. Nelson, W. A. Biolsi, J. Appl. Phys. 50, 2155 (1979).
[CrossRef]

J. Electrochem. Soc. (2)

A. C. Adams, D. P. Schinke, C. D. Capio, J. Electrochem. Soc. 126, 1539 (1979).
[CrossRef]

J. R. Hollahan, J. Electrochem. Soc. 126, 930 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Acta (1)

R. T. Kersten, Opt. Acta 22, 503 (1975).
[CrossRef]

Other (3)

M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1965), p. 62.

T. W. Hou, unpublished results.

D. P. Schinke, R. G. Smith, M. A. Karr, D. R. Mackenzie, at Conference on Laser Engineering and Applications, Washington, D. C., 1–3 June 1977, paper 2.1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic drawing of the prism coupler.

Fig. 2
Fig. 2

(β/k) vs W for λ0 632.8 nm (dashed curves) and λ0 = 441.6 nm (solid curves) for n2 = 1.000, n1 = 1.530.

Fig. 3
Fig. 3

Photodiode output as a function of laser incident angle for a 1.120-μm plasma silicon oxide film on a garnet substrate. Inset shows the modulation caused by light interference in the substrate near the coupling angle.

Fig. 4
Fig. 4

Correlation plot showing the thicknesses measured by the mechanical stylus and the prism coupler with a He–Ne laser.

Fig. 5
Fig. 5

Correlation plot showing the thicknesses measured by the mechanical stylus and the prism coupler with a He–Cd laser.

Fig. 6
Fig. 6

Effects of errors in assumed refractive index (for the case of films too thin to measure index and thickness simultaneously) or measured coupling angle on the film thickness determined by a prism coupler. Exact film thickness is 0.20 μm with a refractive index of 1.530 (solid circle).

Tables (1)

Tables Icon

Table I Refractive Index and Thickness of Plasma Silicon Oxide Films

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

2 k W [ n 1 2 - ( β / k ) 2 ] 1 / 2 + 2 ϕ 12 = ( 2 m + 1 ) π ;             m = 0 , 1 , 2 ,
n 2 β / k = n p sin θ p < n 1 , ϕ 12 = tan - 1 { [ ( β / k ) 2 - n 2 2 ] / [ n 1 2 - ( β / k ) 2 ] } 1 / 2 , k = 2 π / λ 0 ;

Metrics