Abstract

Recursion relationships are developed which generate the characteristic mode equations for both free and prism-loaded optical waveguides composed of N arbitrary dielectric layers. The solutions of these equations allow the computation of the effective mode-propagation coefficients and, in the case of prism loading, leakage rates and coupling efficiencies for arbitrary gap shape and coupling strength. As an illustration four specific prism/waveguide couplers with linearly tapered gaps are numerically analyzed. Two of these are single-layer waveguides (N = 1), and the other two are multilayered waveguides (N = 19) with ni chosen to simulate exponential index gradients. Results obtained from the present theory in the weak coupling limit are shown to agree with those obtained in previous work.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (40)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription