Abstract

An optical waveguide switch has been realized utilizing the total reflection critical angle controlled by the motion of a dielectric chip set on a waveguide surface. By the contact–noncontact of a GGG chip with the SiO2–Ta2O5 waveguide film having a built-in low refractive-index channel, a switching angle of 22.5° and extincion ratio of 12–16 dB were obtained for the TE0 mode at 0.633-μm wavelength. A 1 × 3 switch that includes two switching positions driven by 6-V electromagnets is demonstrated.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. K. Sheem, C. S. Tsai, Appl. Opt. 17, 892 (1978).
    [CrossRef] [PubMed]
  2. D. A. Wille, M. C. Hamilton, Appl. Phys. Lett. 24, 159 (1974).
    [CrossRef]
  3. L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
    [CrossRef]
  4. H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19-1, 451 (1980).
  5. H. Terui, M. Kobayashi, J. Appl. Phys.52, No. 7 (1981), to be published.
    [CrossRef]
  6. R. Ulrich, R. J. Martin, Appl. Opt. 10, 2077(1971).
    [CrossRef] [PubMed]
  7. M. J. Sun, M. W. Muller, Appl. Opt. 16, 814 (1977).
    [CrossRef] [PubMed]

1980

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19-1, 451 (1980).

1978

1977

1974

D. A. Wille, M. C. Hamilton, Appl. Phys. Lett. 24, 159 (1974).
[CrossRef]

1971

1970

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Dakss, M. L.

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Hamilton, M. C.

D. A. Wille, M. C. Hamilton, Appl. Phys. Lett. 24, 159 (1974).
[CrossRef]

Heidrich, P. F.

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Kobayashi, M.

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19-1, 451 (1980).

H. Terui, M. Kobayashi, J. Appl. Phys.52, No. 7 (1981), to be published.
[CrossRef]

Kuhn, L.

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Martin, R. J.

Muller, M. W.

Scott, B. A.

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Sheem, S. K.

Sun, M. J.

Terui, H.

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19-1, 451 (1980).

H. Terui, M. Kobayashi, J. Appl. Phys.52, No. 7 (1981), to be published.
[CrossRef]

Tsai, C. S.

Ulrich, R.

Wille, D. A.

D. A. Wille, M. C. Hamilton, Appl. Phys. Lett. 24, 159 (1974).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. A. Wille, M. C. Hamilton, Appl. Phys. Lett. 24, 159 (1974).
[CrossRef]

L. Kuhn, M. L. Dakss, P. F. Heidrich, B. A. Scott, Appl. Phys. Lett. 17, 241 (1970).
[CrossRef]

Jpn. J. Appl. Phys. Suppl.

H. Terui, M. Kobayashi, Jpn. J. Appl. Phys. Suppl. 19-1, 451 (1980).

Other

H. Terui, M. Kobayashi, J. Appl. Phys.52, No. 7 (1981), to be published.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic view of the total reflection optical waveguide switch by the motion of the dielectric chip set on the waveguide surface.

Fig. 2
Fig. 2

Cross section of the total reflection optical waveguide switch.

Fig. 3
Fig. 3

Characteristics of the effective indices and the critical angle at the low refractive-index channel with the movable dielectric chip motion.

Fig. 4
Fig. 4

Dependence of the critical angle change Δθc0[=Δθc(0,∞)] on the refractive index n0 of the movable dielectric chip. The cutoff area is outside the dashed line.

Fig. 5
Fig. 5

Critical angle change Δθc dependence on distance l1 between the movable dielectric chip and the bulge top of the low-index channel.

Fig. 6
Fig. 6

Maximum critical angle change Δθc0m dependence on the refractive index n0 of the movable dielectric chip, with a parameter of the index change ratio Δ in the low-index channel.

Fig. 7
Fig. 7

Maximum critical angle change Δθc0m dependence on the refractive index n0 of the movable dielectric chip, with a parameter of the intermediate layer index n1.

Fig. 8
Fig. 8

Transmitted and reflected light intensities vs load on the GGG chip.

Fig. 9
Fig. 9

Movable dielectric chip pressing mechanism.

Fig. 10
Fig. 10

Experimental 1 × 3 switch array including two switch positions.

Fig. 11
Fig. 11

The 1 × 3 switching: (a) all light paths obtained by selecting a slightly larger incident angle than the critical angle θc(=11.5°); (b) switch 1 on; (c) switches 1 and 2 off; (d) switch 1 off and switch 2 on.

Tables (1)

Tables Icon

Table I Experimental Switch Parameters

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n 2 ( y ) = n 2 [ 1 - Δ exp ( - 2 y 2 / α 2 ) ] .
Δ · n 2 = - ( l 2 - l 2 ) / l 2
a 2 l 2 = tan - 1 ( T 23 2 a 3 / a 2 ) - tan - 1 ( T 21 2 ϕ a 1 / a 2 ) + m π , a 0 = k N 2 - n 0 2 , a 1 = k N 2 - n 1 2 , a 2 = k n 2 2 - N 2 , a 3 = k N 2 - n 3 2 , T 10 = { 1 n 1 / n 0 , T 21 = { 1 n 2 / n 1 , T 23 = { 1 for TE mode n 2 / n 3 for TM mode , ϕ = ( a 1 - T 10 2 a 0 ) - ( T 10 2 a 0 + a 1 ) exp ( 2 a 1 l 1 ) ( a 1 - T 10 2 a 0 ) - ( T 10 2 a 0 + a 1 ) exp ( 2 a 1 l 1 ) , and k = 2 π / λ ,
θ c = cos - 1 ( N 2 / N 2 ) ,
Δ θ c ( l 1 , l 1 ) = cos - 1 [ N 2 ( l 1 ) / N 2 ( l 1 ) ] - cos - 1 [ N 2 ( l 1 ) / N 2 ( l 1 ) ] ,

Metrics