Abstract

Stress in an optical fiber has not been measured because of its small diameter. This paper explains the protective quality of a jacketed fiber from lateral pressure by a new experimental method, which enables the stress in the fiber to be measured using the photoelastic effect. Results show that the effect of the nylon jacket with a silicone rubber layer depends on the shell effect of the nylon jacket within its elastic deformation region and is so large that little lateral pressure is actually applied on the fiber. However, fiber stress and excess loss increase suddenly when the nylon jacket shell yields.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).
  2. K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).
  3. Y. Mitsunaga, Y. Katsuyama, Y. Ishida, Trans. IECE Jpn. J64-B, 142 (1981/1982).
  4. N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
    [CrossRef]
  5. J. W. Evans, J. Opt. Soc. Am. 39, 229 (1949).
    [CrossRef]
  6. V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978).
    [CrossRef]
  7. Handbook for Mechanical Engineers (Japanese Society of Mechanical Engineers, 1960), pp. 4–57.

1980 (1)

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

1978 (1)

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978).
[CrossRef]

1975 (1)

D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).

1949 (1)

Evans, J. W.

French, W. G.

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978).
[CrossRef]

Fukutomi, H.

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Gloge, D.

D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).

Imoto, N.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

Ishida, Y.

Y. Mitsunaga, Y. Katsuyama, Y. Ishida, Trans. IECE Jpn. J64-B, 142 (1981/1982).

Ishihara, K.

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Katsuyama, Y.

Y. Mitsunaga, Y. Katsuyama, Y. Ishida, Trans. IECE Jpn. J64-B, 142 (1981/1982).

Mitsunaga, Y.

Y. Mitsunaga, Y. Katsuyama, Y. Ishida, Trans. IECE Jpn. J64-B, 142 (1981/1982).

Mochizuki, S.

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Nakatani, N.

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Ramaswamy, V.

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978).
[CrossRef]

Sakai, J.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

Tsuchiya, H.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

Uchida, N.

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Yoshizawa, N.

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

Bell Syst. Tech. J. (1)

D. Gloge, Bell Syst. Tech. J. 54, 245 (1975).

Electron. Lett. (1)

V. Ramaswamy, W. G. French, Electron. Lett. 14, 143 (1978).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Imoto, N. Yoshizawa, J. Sakai, H. Tsuchiya, IEEE J. Quantum Electron. QE-16, 1267 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

Trans. IECE Jpn. (1)

Y. Mitsunaga, Y. Katsuyama, Y. Ishida, Trans. IECE Jpn. J64-B, 142 (1981/1982).

Trans. IECE, Jpn. (1)

K. Ishihara, S. Mochizuki, N. Nakatani, N. Uchida, H. Fukutomi, Trans. IECE, Jpn. J63-B, 71 (1980/1981).

Other (1)

Handbook for Mechanical Engineers (Japanese Society of Mechanical Engineers, 1960), pp. 4–57.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Experimental setup for fiber birefringence measurement. The polarizer and analyzer are rotated around the beam axis by 45° with respect to the principal axis of fiber anisotropy.

Fig. 2
Fig. 2

Measured values of I/I0 for a circular core fiber under external uniaxial pressure.

Fig. 3
Fig. 3

Measured values of [d(δβ)/(dλ)] for a circular core fiber under external uniaxial pressure.

Fig. 4
Fig. 4

Measured values of [d(δβ)]/(dλ) plotted against external pressure P for a circular core fiber.

Fig. 5
Fig. 5

Measured values of internal pressure P plotted against external pressure F for a silicone-coated fiber.

Fig. 6
Fig. 6

Measured values of silicone rubber displacement δ plotted against external pressure F for a silicone-coated fiber.

Fig. 7
Fig. 7

Measured values of internal pressure P plotted against external pressure F for nylon-coated fibers with a silicone rubber layer.

Fig. 8
Fig. 8

Measured values of plastic jacket displacement δ plotted against external pressure F for nylon-coated fibers with a silicone rubber layer.

Fig. 9
Fig. 9

Measured values of pressure ratio P/F plotted against the cross-sectional area of the nylon coat for nylon-coated fibers with a silicone rubber layer.

Fig. 10
Fig. 10

Measured values of internal pressure P plotted against external pressure F for samples 4–6. These samples have the same thickness and diameter of coated nylon.

Fig. 11
Fig. 11

Measured values of excess loss plotted against external pressure F for samples 2 and 3.

Fig. 12
Fig. 12

Stress–strain curve for a homopolymer nylon which is used as the coating material.

Fig. 13
Fig. 13

Both theoretical and experimental plastic jacket yield pressure Fy plotted against nylon layer thickness t for samples 1–3.

Fig. 14
Fig. 14

Measured values of stress relaxation ratio F*/F plotted against external pressure F for samples 1–3.

Fig. 15
Fig. 15

Measured values of stress relaxation ratio F*/F plotted against external pressure F for samples 4–6.

Fig. 16
Fig. 16

Theoretical model of shell structure under lateral pressure F.

Tables (1)

Tables Icon

Table I Measured Parameters of Jacketed Fibers

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I I 0 = cos 2 ( δ β 2 · L ) ,
d ( δ β ) d λ = 2 π Δ λ · L .
d ( δ β ) d λ = 16 ( C 1 - C 2 ) P λ 2 · d ,
F y = 2 σ y t 1 k · t 2 r + t - 2 Π ( 1 + k ) - 1 k · t 2 r + t · 1 Π ( 1 + k ) .
M = F · r 2 [ 1 - 2 π ( 1 + k ) ] ,
K = 1 3 ( t 2 · r ) 2 + 1 5 ( t 2 · r ) 4 + ,
σ 1 = - F 2 t + M t r ( 1 + 1 k · e 1 r + e 1 ) ,
σ 2 = - F 2 t + M t r ( 1 + 1 k · - e 2 r - e 2 ) ,
e 1 , 2 = t 2 ± η ,             η = K r ( F r + M ) ( 1 + k ) M + K r F .
σ 1 , 2 = - F 2 t + M t r ( 1 ± 1 k · t 2 r ± t ) .
F y = 2 σ y t 1 K · t 2 r + t - 2 Π ( 1 + K ) - 1 K · t 2 r + t · 2 Π ( 1 + K ) .

Metrics