Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Fast delta Hadamard transform

Not Accessible

Your library or personal account may give you access

Abstract

In many fields (e.g., spectroscopy, imaging spectroscopy, photoacoustic imaging, coded aperture imaging) binary bit patterns known as m sequences are used to encode (by multiplexing) a series of measurements in order to obtain a larger throughput. The observed measurements must be decoded to obtain the desired spectrum (or image in the case of coded aperture imaging). Decoding in the past has used a technique called the fast Hadamard transform (FHT) whose chief advantage is that it can reduce the computational effort from N2 multiplies to N log2N additions or subtractions. However, the FHT has the disadvantage that it does not readily allow one to sample more finely than the number of bits used in the m sequence. This can limit the obtainable resolution and cause confusion near the sample boundaries (phasing errors). We have developed both 1-D and 2-D methods (called fast delta Hadamard transforms, FDHT) which overcome both of the above limitations. Applications of the FDHT are discussed in the context of Hadamard spectroscopy and coded aperture imaging with uniformly redundant arrays. Special emphasis has been placed on how the FDHT can unite techniques used by both of these fields into the same mathematical basis.

© 1981 Optical Society of America

Full Article  |  PDF Article
More Like This
Large symmetric π transformations for Hadamard transforms

E. E. Fenimore
Appl. Opt. 22(6) 826-829 (1983)

Time-resolved and energy-resolved coded aperture images with URA tagging

E. E. Fenimore
Appl. Opt. 26(14) 2760-2769 (1987)

Hadamard–Transform Image Scanning

J. A. Decker
Appl. Opt. 9(6) 1392-1395 (1970)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (9)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (12)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved