Abstract

The problem of reabsorption in luminescent solar concentrators (LSC) is discussed. A mathematical development is presented which enables the LSC gain to be calculated based on the optical properties of the materials and a random walk formalism. Two- and three-dimensional analyses are used. A detailed set of calculations for a common dye (rhodamine 6G) is used to examine the practicality of employing a single dye. The effects of diameter, thickness, and quantum yield on the LSC output are presented. The spectrum of the LSC output as a function of concentration is calculated. It is suggested that LSCs can be made more efficient with a system which utilizes radiationless electronic excited state transport and trapping as intermediate steps between absorption and reemission. Trap emission substantially avoids the reabsorption problem.

© 1981 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription