Abstract

In many cases the electromagnetic modes of a sphere can be obtained exactly. Special simplifications occur when the conductivity, complex permittivity, and complex permeability vary only in the radial direction, and static and time dependent examples are discussed. With quadratic or Coulomblike permittivity variations, the wave functions resemble the quantum mechanical harmonic oscillator or hydrogen atom wave functions, and similar angular momentum operators are obtained.

© 1981 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. W. Casperson, J. Opt. Soc. Am. 65, 399 (1975).
  2. L. W. Casperson, Astrophys. Space Sci. 48, 389 (1977).
  3. C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 415.
  5. H. W. Kogelnik, T. Li, Appl. Opt. 5, 1550 (1966).
  6. L. W. Casperson, J. Opt. Soc. Am. 66, 1373 (1976).
  7. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions, NBS (U.S. GPO, Washington, D.C., 1964;Handbook of Mathematical FunctionsDover, New York, 1965), p. 781.
  8. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1670.
  9. Ref. 8, p. 1663.
  10. Ref. 4, p. 158.
  11. L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), p. 82.
  12. See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), Sec. 16.3.

1977 (1)

L. W. Casperson, Astrophys. Space Sci. 48, 389 (1977).

1976 (1)

1975 (1)

1966 (1)

1961 (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).

Bond, W. L.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).

Casperson, L. W.

Feshbach, H.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1670.

Garrett, C. G. B.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).

Jackson, J. D.

See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), Sec. 16.3.

Kaiser, W.

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).

Kogelnik, H. W.

Li, T.

Morse, P. M.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1670.

Schiff, L. I.

L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), p. 82.

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 415.

Appl. Opt. (1)

Astrophys. Space Sci. (1)

L. W. Casperson, Astrophys. Space Sci. 48, 389 (1977).

J. Opt. Soc. Am. (2)

Phys. Rev. (1)

C. G. B. Garrett, W. Kaiser, W. L. Bond, Phys. Rev. 124, 1807 (1961).

Other (7)

J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 415.

M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions, NBS (U.S. GPO, Washington, D.C., 1964;Handbook of Mathematical FunctionsDover, New York, 1965), p. 781.

P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 1670.

Ref. 8, p. 1663.

Ref. 4, p. 158.

L. I. Schiff, Quantum Mechanics (McGraw-Hill, New York, 1968), p. 82.

See, for example, J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1962), Sec. 16.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics