Abstract

This paper describes the fabrication process and coupling principle of a single-mode fiber coupler. Precise etching properties of the fibers used are presented. Fiber etching is shown to result in smooth surfaces. Coupling is seen to vary with the refractive index of the material separating the fiber cores. Coupling efficiency is shown to be variable in a controlled and reversible manner after coupler fabrication. For a 3-dB coupling efficiency, <1-dB insertion loss has been obtained.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wijngaard, J. Opt. Soc. Am. 63, 944 (1973).
  2. P. D. McIntyre, A. W. Snyder, J. Opt. Soc. Am. 63, 1518 (1973).
  3. A. W. Snyder, J. Opt. Soc. Am. 62, 1267 (1972).
  4. A. W. Snyder, J. Opt. Soc. Am. 66, 877 (1976).
  5. S. K. Sheem, T. G. Giallorenzi, Opt. Lett. 4, 29 (1979).
  6. E. Snitzer, J. Opt. Soc. Am. 51, 491 (1961).
  7. D. Gloge, Appl. Opt. 10, 2252 (1971).
  8. A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-18, 608 (1970).
  9. K. Ogawa, Bell Syst. Tech. J. 56, 729 (1977).
  10. A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1138 (1969).

1979 (1)

1977 (1)

K. Ogawa, Bell Syst. Tech. J. 56, 729 (1977).

1976 (1)

1973 (2)

1972 (1)

1971 (1)

1970 (1)

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-18, 608 (1970).

1969 (1)

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1138 (1969).

1961 (1)

Appl. Opt. (1)

Bell Syst. Tech. J. (1)

K. Ogawa, Bell Syst. Tech. J. 56, 729 (1977).

IEEE Trans. Microwave Theory Tech. (2)

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-17, 1138 (1969).

A. W. Snyder, IEEE Trans. Microwave Theory Tech. MTT-18, 608 (1970).

J. Opt. Soc. Am. (5)

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration of apparatus used to fabricate the single-mode fiber coupler.

Fig. 2
Fig. 2

Coupling efficiency η in decibels as a function of the refractive index n of the material between the two fibers for several values of the distance between the two fibers for the HE11 mode. Core index of refraction is 1.46.

Fig. 3
Fig. 3

Final fiber diameter as a function of etching time for fibers used in the experiments. Curve 1 is for HF:NH4F = 1:4, while curve 2 is for 1:1.

Fig. 4
Fig. 4

(a) Microphotograph (200×) of a taper-etched fiber with HF:NH4F = 1:4. (b) Comparison of an etched single-mode fiber to one which is not etched (50×).

Fig. 5
Fig. 5

(a) Microphotograph (200×) of the He–Ne laser beam input to port 1 of the single-mode fiber coupler. (b) Microphotograph (200×) of the He–Ne laser beam emerging from port 2 of the single-mode fiber coupler. (c) Microphotograph (200×) of the He–Ne laser beam emerging from port 4 of the single-mode fiber coupler.

Tables (2)

Tables Icon

Table I Influence of the Distance d Between the Two Fibers of the Single-Mode Fiber Coupler

Tables Icon

Table II Measured Results of the Single-Mode Fiber Coupler

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

δ = 1 ( n / n 1 ) 2 ,
V = ( 2 π a / λ ) ( n 1 2 n 2 ) 1 / 2 ,
U = a ( k 2 n 1 2 β 2 ) 1 / 2 ,
W = a ( β 2 k 2 n 2 ) 1 / 2 ,
V 2 = U 2 + W 2 .
U J 1 ( U ) J 0 ( U ) = W K 1 ( W ) K 0 ( W ) ,
U 2.405 exp ( 1 / υ ) .
C = 2 δ a { U 2 V 3 2 W π d / a exp [ W ( d / a 2 ) ] } .
η = 10 log ( P 4 P 4 + P 2 ) ,
L = 10 log ( P 2 + P 4 P 1 ) ,
D = 10 log ( P 3 / P 1 ) .

Metrics