Abstract

Calculations are presented to permit range predictions of a CO2 laser communication system when attenuation statistics are available. Both TV and digital transmission are considered. In the former case, an AM–FM modulation scheme is used. Direct demodulation is assumed. Examples are given in the use of the results to obtain range probabilities based on reported propagation statistics.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Waksberg, Can. Electron. Eng. 20, 35 (Mar.1975).
  2. A. Waksberg, IEEE J. Quantum Electron. QE-11, 778 (1975).
  3. Technical Staff, Transmission Systems for Communications (Bell Laboratories, Holmdel, N.J., 1970), p. 628.
  4. T. Chiba, Appl. Opt. 10, 2456 (1971).
  5. A. Waksberg, W. R. Clements, Can. J. Phys. 57, 1401 (1979).
  6. M. Galeotti, B. Daino, B. Sette, Appl. Opt. 16, 660 (1970).
  7. T. S. Chu, D. G. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

1979

A. Waksberg, W. R. Clements, Can. J. Phys. 57, 1401 (1979).

1975

A. Waksberg, Can. Electron. Eng. 20, 35 (Mar.1975).

A. Waksberg, IEEE J. Quantum Electron. QE-11, 778 (1975).

1971

1970

1968

T. S. Chu, D. G. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Chiba, T.

Chu, T. S.

T. S. Chu, D. G. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Clements, W. R.

A. Waksberg, W. R. Clements, Can. J. Phys. 57, 1401 (1979).

Daino, B.

Galeotti, M.

Hogg, D. G.

T. S. Chu, D. G. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Sette, B.

Waksberg, A.

A. Waksberg, W. R. Clements, Can. J. Phys. 57, 1401 (1979).

A. Waksberg, Can. Electron. Eng. 20, 35 (Mar.1975).

A. Waksberg, IEEE J. Quantum Electron. QE-11, 778 (1975).

Appl. Opt.

Bell Syst. Tech. J.

T. S. Chu, D. G. Hogg, Bell Syst. Tech. J. 47, 723 (1968).

Can. Electron. Eng.

A. Waksberg, Can. Electron. Eng. 20, 35 (Mar.1975).

Can. J. Phys.

A. Waksberg, W. R. Clements, Can. J. Phys. 57, 1401 (1979).

IEEE J. Quantum Electron.

A. Waksberg, IEEE J. Quantum Electron. QE-11, 778 (1975).

Other

Technical Staff, Transmission Systems for Communications (Bell Laboratories, Holmdel, N.J., 1970), p. 628.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

CO2 laser communication system—TV transmission.

Fig. 2
Fig. 2

Probability of error as a function of SNR.

Fig. 3
Fig. 3

Optimum SNR as a function of received power PR for various Γm (AM–FM system).

Fig. 4
Fig. 4

Optimum SNR as a function of PR for various Γa (digital system).

Fig. 5
Fig. 5

Drive phase amplitude Γm as a function of drive voltage.

Fig. 6
Fig. 6

Range calculations giving SNR as a function of range of various attenuations (TV AM–FM system).

Fig. 7
Fig. 7

Range calculation giving SNR as a function of range for various attenuations (1.544-Mbit digital system).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

CNR = η [ P R sin ( Γ b ) J 1 ( Γ m ) ] 2 [ 2 h ν { P R [ 1 cos ( Γ b ) J 0 ( Γ m ) ] + P B } + η ( NEP ) 2 ] B ,
Γ m = 2 π L x η 0 3 r 41 V m λ D ,
SNR TV = 20 log peak‐to‐peak amplitude of picture signal rms noise out of weighted filter .
( SNR ) ms = 3 2 ( Δ F ) 2 ( B 0 ) 3 ( CNR ) ms ,
SNR TV = SNR ms + 6 dB ( in dB ) .
Pe = 1 2 [ 1 erf ( A 2 2 N rms ) ] ,
S P - P N = η ( P R sin Γ b sin Γ a ) 2 ( 2 h ν { P R 2 [ 1 cos ( Γ b + Γ a ) ] + P B } + η ( NEP ) 2 ) B ,
P R / P L = τ g τ t τ r τ a ,
τ g = 0.60 ( D R d t λ ) 2 1 R 2 ,

Metrics