Abstract

This paper introduces a compact polarization-independent optical circulator for communications using multimode optical fibers. This circulator consists of two pairs of rutile prisms used as polarization separators, a YIG Faraday rotator, a ring-shaped magnet, and a quartz halfwave plate. Insertion losses of 2.3 dB including fiber connection losses and isolations of 32 dB at a wavelength of 1.3 μm were obtained using this circulator, and stabilization of the semiconductor laser was confirmed. Details on the design, fabrication, and characteristics of this circulator are presented.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).
  2. T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).
  3. T. Matsumoto, K. Sato, Appl. Opt. 19, 108 (1980).
  4. H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).
  5. M. Shirasaki, H. Kuwahara, T. Obokata, in CLEOS 1980, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1980), paper TUAA2.
  6. H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

1980 (1)

1979 (3)

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).

1978 (1)

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).

Akita, Y.

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Ikushima, I.

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).

Iwamura, H.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

Iwasaki, H.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

Kanada, T.

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).

Kubodera, K.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

Kuwahara, H.

M. Shirasaki, H. Kuwahara, T. Obokata, in CLEOS 1980, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1980), paper TUAA2.

Maeda, M.

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).

Matsumoto, T.

Nawata, K.

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).

Nishi, H.

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Nishitani, Y.

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Noda, J.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

Obokata, T.

M. Shirasaki, H. Kuwahara, T. Obokata, in CLEOS 1980, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1980), paper TUAA2.

Sato, K.

Shirasaki, M.

M. Shirasaki, H. Kuwahara, T. Obokata, in CLEOS 1980, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1980), paper TUAA2.

Takusagawa, M.

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Torii, Y.

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

Yano, M.

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

H. Nishi, M. Yano, Y. Nishitani, Y. Akita, M. Takusagawa, Appl. Phys. Lett. 35, 3, 232 (1979).

Electron. Lett. (1)

H. Iwamura, H. Iwasaki, K. Kubodera, Y. Torii, J. Noda, Electron. Lett. 15, 25, 831 (1979).

IEEE J. Quantum Electron. (2)

I. Ikushima, M. Maeda, IEEE J. Quantum Electron. QE-14, 331 (1978).

T. Kanada, K. Nawata, IEEE J. Quantum Electron. QE-15, 559 (1979).

Other (1)

M. Shirasaki, H. Kuwahara, T. Obokata, in CLEOS 1980, Digest of Technical Papers (Optical Society of America, Washington, D.C., 1980), paper TUAA2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Principle of polarization separation. The optic axis of the birefringent medium is perpendicular to the plane of the figure. An ordinary ray passes through the boundary at the Brewster angle. An extraordinary ray undergoes total internal reflection.

Fig. 2
Fig. 2

Polarization separator configuration. Two rutile prisms are secured with an air gap of ∼20 μm. The two separated components (i.e., ordinary and extraordinary components of the incident beam) are made adjacent parallel beams by total internal reflection.

Fig. 3
Fig. 3

Insertion loss and crosstalk of the prism system measured by polarized light beam input from port 1. Similar characteristics were obtained by input from other ports.

Fig. 4
Fig. 4

Circulator configuration. The components are two polarization separators as shown in Fig. 2: a YIG crystal within a ring-shaped permanent magnet, and a quartz halfwave plate. All optical components are AR coated.

Fig. 5
Fig. 5

Insertion loss and the isolation of the circulator. Isolation from 1 to 3 is degraded by residual reflections of AR coatings.

Fig. 6
Fig. 6

Wavelength dependence of the circulator with fiber interface. The insertion loss increased to ∼2.3 dB. The parameters of connected fibers and collimating lenses are given in the text. The peak of the isolation curve is due to the wavelength dependences of the Faraday rotator and halfwave plate.

Fig. 7
Fig. 7

Assembled circulator. Its size, including four optical fiber connectors, is 40 × 40 × 22 mm.

Fig. 8
Fig. 8

Experiment investigating stabilization of laser characteristics using the circulator. The characteristics changes (especially the lasing spectrum and laser noise) were investigated with and without the circulator with highly reflective termination.

Fig. 9
Fig. 9

Spectrum change caused by the separation between the output facet of fiber 2 and the dielectric mirror.

Fig. 10
Fig. 10

Laser noise spectrum: upper trace, circulator removed; lower trace, circulator inserted; H, 50 MHz/div; V, 10 dB/div.

Tables (1)

Tables Icon

Table I Components of the Optical Circulator

Metrics