Abstract

A measurement technique is described that is capable of producing accurate numerical maps of the parallelism defect of optically contacted Fabry-Perot etalons. A photoelectric raster scan of the etalon transmission intensity distribution is performed at each of three closely spaced etalon tunings, one at maximum on-axis and two at the half-maxima on-axis positions. Simple data manipulation gives numerical or contour maps of the parallelism defect. Results demonstrating the effect of mechanical constraints on etalon parallelism are presented.

© 1981 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).
  2. H. F. Dobele, J. H. Massig, Appl. Opt. 15, 69 (1976).
  3. P. B. Hays, R. G. Roble, Appl. Opt. 10, 193 (1971).
  4. M. A. Biondi, W. A. Feibelman, Planet. Space Sci. 16, 431 (1968).
  5. R. Chabbal, J. Rech. CNRS 24, 138 (1953).
  6. J. Meaburn, F. Anderson, R. F. Harrington, J. Mortleman, A. Peters, Appl. Opt. 15, 3006 (1976).

1976

1971

1968

M. A. Biondi, W. A. Feibelman, Planet. Space Sci. 16, 431 (1968).

1966

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

1953

R. Chabbal, J. Rech. CNRS 24, 138 (1953).

Anderson, F.

Bates, B.

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

Biondi, M. A.

M. A. Biondi, W. A. Feibelman, Planet. Space Sci. 16, 431 (1968).

Bradley, D. J.

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

Chabbal, R.

R. Chabbal, J. Rech. CNRS 24, 138 (1953).

Dobele, H. F.

Feibelman, W. A.

M. A. Biondi, W. A. Feibelman, Planet. Space Sci. 16, 431 (1968).

Harrington, R. F.

Hays, P. B.

Kohuo, T.

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

Massig, J. H.

Meaburn, J.

Mortleman, J.

Peters, A.

Roble, R. G.

Yates, H. W.

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

Appl. Opt.

J. Rech. CNRS

R. Chabbal, J. Rech. CNRS 24, 138 (1953).

J. Sci. Instrum.

B. Bates, D. J. Bradley, T. Kohuo, H. W. Yates, J. Sci. Instrum. 43, 476 (1966).

Planet. Space Sci.

M. A. Biondi, W. A. Feibelman, Planet. Space Sci. 16, 431 (1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the parallelism measurement. Optically contacted etalon is sited in a small pressure chamber which may be tilted and rotated with respect to the optical axis.

Fig. 2
Fig. 2

Spectrograms obtained using a 1.26-cm gap etalon during a parallelism measurement: (a) free spectral range calibration, a total of 8000 pressure steps taken; (b) detailed measurement of the line profile enabling an empirical calibration for (ΔC/C)ij to be made. Three selected positions for subsequent raster scan imaging are indicated.

Fig. 3
Fig. 3

Variation of ΔC/C, the observable discussed in the text, with fractional change in transmitted order for A, peak shown in Fig. 2(b); B, calculated peak obtained using the full form of the theoretical transmission function using realistic values for the various defect finesses; C, pure Airy function of the equivalent reflective finesse.

Fig. 4
Fig. 4

Isometric plot of the variations in effective gap spacing for an optically contacted etalon of 1.26-cm gap, SNR 087901, 80% reflectivity. Numerical data occupy a 48 × 48 doubly dimensioned array.

Fig. 5
Fig. 5

Transmitted intensity distribution for the same etalon shown in Fig. 4: (a) intensity distribution at maximum on axis; (b) intensity distribution at half-maximum on axis.

Fig. 6
Fig. 6

Numerical parallelism maps: (a) unconstrained etalon SNR 087803, and (b) same etalon following the imposition of a mechanical constraint designed to improve the parallelism (same orientation). Each number represents the departure of the effective etalon gap from an arbitrary state of perfect parallelism (Δdij = 0). Units are angstroms.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( Δ C C ) i j = C i j 1 C i j 3 C i j 2 , ( C ¯ C ) i j = C ij 1 + C i j 3 C i j 2 .
σ ( Δ d ) = λ 1 8 F ( 2 C 0 ) 1 / 2 ,

Metrics